Banner-baigiang-1090_logo1
Banner-baigiang-1090_logo2

MUỐN TẮT QUẢNG CÁO?

Thư mục

Quảng cáo

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Tìm kiếm theo tiêu đề

    Tìm kiếm Google

    Quảng cáo

    Quảng cáo

  • Quảng cáo

    Hướng dẫn sử dụng thư viện

    Hỗ trợ kĩ thuật

    Liên hệ quảng cáo

    • (04) 66 745 632
    • 0166 286 0000
    • contact@bachkim.vn

    ViOLET Chào mừng năm học mới

    Bài 62. Điện gió - Điện mặt trời - Điện hạt nhân

    Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
    Nhấn vào đây để tải về
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn:
    Người gửi: nguyễn thị trúc na
    Ngày gửi: 21h:57' 22-08-2017
    Dung lượng: 3.2 MB
    Số lượt tải: 1
    Số lượt thích: 0 người
    TRƯỜNG THCS phan chu trinh
    MÔN TOÁN 8
    Tiết 47: Phương trình tích
    NHIỆT LIỆT CHÀO MỪNG CÁC THẦY CÔ GIÁO VÀ CÁC EM HỌC SINH !
    1. Phân tích mỗi đa thức sau thành nhân tử:
    Kiểm tra bài cũ
    b) Q(x) = (x - 1)(x2 + 3x - 2) - (x3 - 1)
    a) P(x) = (x2 - 1) + (x + 1)(x - 2)
    2. Nêu các phương pháp phân tích đa thức thành nhân tử đã học ?
    Trả lời:
    Các phương pháp phân tích đa thức thành nhân tử đã học:
    - Đặt nhân tử chung
    - Dùng hằng đẳng thức
    - Nhóm hạng tử
    - Tách một hạng tử thành nhiều hạng tử
    - Thêm và bớt cùng một hạng tử
    Phân tích các đa thức sau thành nhân tử:
    P(x) = (x2 - 1)+ (x + 1)(x - 2)
    Q(x) = (x - 1)(x2 + 3x - 2) – (x3 -1)
    Bài giải
    a) P(x) = (x2 – 1) + (x + 1)(x – 2)
    = (x + 1)(x – 1) + (x + 1)(x – 2)
    = (x + 1)(x – 1+ x – 2)
    = (x + 1)(2x – 3)
    b) Q(x) = (x – 1)(x2 + 3x – 2) – (x3 – 1)
    = (x – 1)(x2 + 3x – 2) – (x –1)(x2 + x + 1)
    = (x –1)(x2 + 3x – 2 – x2 – x – 1)
    = (x –1)(2x – 3)
    Kiểm tra bài cũ
    1. Phương trình tích và cách giải
    Hãy nhớ lại một tính chất của phép nhân các số, phát biểu tiếp các khẳng định sau :
    - Trong một tích, nếu có một thừa số bằng 0 thì

    - Ngược lại, nếu tích bằng 0 thì ít nhất một trong các thừa số của tích
    tích bằng 0
    phải bằng 0

    a.b = 0
    (a và b là 2 số)
    Ví dụ1. Giải phương trình: (2x – 3)(x + 1) = 0
     2x – 3 = 0 hoặc x + 1 = 0
     2x = 3
     x = 1,5
    1) 2x – 3 = 0
    2) x + 1 = 0
     x = - 1
    Giải:
    (2x – 3)(x + 1) = 0
    Phương trình đã cho có hai nghiệm là x = 1,5 và x = - 1.
    ?2
    Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
     a = 0 hoặc b = 0
    . Phương trình (1) được gọi là phương trình tích.
    Trong bài này, chúng ta chỉ xét các phương trình mà hai vế của nó là hai biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu.
    (2x – 3)(x + 1) = 0 (1)
    1. Phương trình tích và cách giải
    Ví dụ1. Giải phương trình: (2x – 3)(x + 1) = 0 (1)
     2x – 3 = 0 hoặc x + 1 = 0
     2x = 3
     x = 1,5
    1) 2x – 3 = 0
    2) x + 1 = 0
     x = - 1
    Giải:
    (2x – 3)(x + 1) = 0
    Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
    A(x)
    B(x)
    . = 0
    *Xét phương trình tích có dạng: A(x)B(x) = 0 (trong đó A(x), B(x) là những biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu).
    . Phương trình (1) được gọi là phương trình tích.
    Bước 2: Giải A(x) = 0 và B(x) = 0
    Bước 3: Kết luận nghiệm
    Cách giải
    (lấy tất cả các nghiệm của chúng).
    (2x – 3)(x + 1) = 0 (1)
    Em hãy lấy ví dụ về phương trình tích?
    1. Phương trình tích và cách giải
    Ví dụ1. Giải phương trình: (2x – 3)(x + 1) = 0 (1)
     2x – 3 = 0 hoặc x + 1 = 0
     2x = 3
     x = 1,5
    1) 2x – 3 = 0
    2) x + 1 = 0
     x = - 1
    Giải:
    (2x – 3)(x + 1) = 0
    Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
    *Xét phương trình tích có dạng: A(x)B(x) = 0 (trong đó A(x), B(x) là những biểu thức hữu tỉ của ẩn và không chứa ẩn ở mẫu).
    Bước 2: Giải A(x) = 0 và B(x) = 0
    Bước 3: Kết luận nghiệm
    Cách giải
    (lấy tất cả các nghiệm của chúng).
    (2x – 3)(x + 1) = 0 (1)
    Bài 1. Hãy chỉ ra phương trình tích trong các phương trình sau:
    b)
    a)
    c)
    Bài 2.Giải phương trình:

    Bài tập:
    d)
    e)
    1. Phương trình tích và cách giải
    Ví dụ1. Giải phương trình: (2x - 3)(x + 1) = 0
     2x – 3 = 0 hoặc x + 1 = 0
     2x = 3
     x = 1,5
    1) 2x – 3 = 0
    2) x + 1 = 0
     x = - 1
    Giải:
    ( 2x – 3 )( x + 1) = 0
    Giải phương trình
    (x + 1)(x + 4) = (2 – x)(2 + x)
    Giải:
    2. Áp dụng
    (x + 1)(x + 4) = (2 – x)(2 + x)
     (x + 1)(x + 4) – (2 – x)(2 + x) = 0
     ( x2 + x + 4x + 4) – (22 – x2) = 0
     2x2 + 5x = 0
     x(2x + 5) = 0
    1) x = 0 ;
    2) 2x + 5 = 0
     2x = - 5
     x = - 2,5
    Vậy tập nghiệm của phương trình đã cho là S = { 0 ; - 2,5 }
     x = 0 hoặc 2x + 5 = 0
    Tập nghiệm của phương trình đã cho là S = {1,5; -1 }
    *Xét phương trình tích có dạng:
    Bước 2: Giải A(x) = 0 và B(x) = 0
    Bước 3: Kết luận nghiệm
    (lấy tất cả các nghiệm của chúng).
    Cách giải
     x2 + x + 4x + 4 – 4 + x2 = 0
    Ví dụ 2.
    A(x)B(x) = 0
    1. Phương trình tích và cách giải
    A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0
    Ví dụ 2. Giải phương trình (x + 1)(x + 4) = (2 – x)(2 + x)
    Giải:
    2. Áp dụng
    (x + 1)(x + 4) = (2 – x)(2 + x)
     (x + 1)(x + 4) – (2 – x)(2 + x) = 0
     x2 + x + 4x + 4 – 4 + x2 = 0
     2x2 + 5x = 0
     x(2x + 5) = 0
    1) x = 0 ;
    2) 2x + 5 = 0
     2x = - 5
     x = - 2,5
    Vậy tập nghiệm của phương trình đã cho là S = { 0 ; - 2,5 }
    Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
    Bước 2. Giải phương trình tích rồi kết luận.
     x = 0 hoặc 2x + 5 = 0
    Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
    Bước 2. Giải phương trình tích rồi kết luận.
    Nhận xét:
     x2 + x + 4x + 4 – ( 4 – x2)= 0
    1. Phương trình tích và cách giải
    A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0
    Ví dụ 2. Giải phương trình
    Giải:
    2. Áp dụng
    (x + 1)(x + 4) = (2 – x)(2 + x)
     (x + 1)(x + 4) – (2 – x)(2 + x) = 0
     x2 + x + 4x + 4 – 22 + x2 = 0
     2x2 + 5x = 0
     x(2x + 5) = 0
    1) x = 0 ;
    2) 2x + 5 = 0
     2x = - 5
     x = - 2,5
    Vậy tập nghiệm của phương trình đã cho là S = { 0 ; - 2,5 }
    (x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
    Giải phương trình
    ?3
    (x + 1)(x + 4) = (2 – x)( 2 + x)
     x = 0 hoặc 2x + 5 = 0
    B1. Đưa PT đã cho về dạng PT tích.
    B2. Giải PT tích rồi kết luận.
    Nhận xét:
    Giải:
    (x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
     (x - 1)[(x2 + 3x - 2) - (x2 + x +1)] = 0
     (x – 1)(x2 + 3x – 2 – x2 – x – 1) = 0
     (x - 1)(2x - 3) = 0
     x - 1 = 0 hoặc 2x - 3 = 0
    x - 1 = 0  x = 1
    2x - 3 = 0  2x = 3  x = 1,5
    Vậy tập nghiệm của phương trình đã cho là S = { 1 ; 1,5 }
    1. Phương trình tích và cách giải
    A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0
    2. Áp dụng
    Cách 2
    (x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
     x3 + 3x2 - 2x - x2 - 3x + 2 - x3+1 = 0
     2x2 - 5x + 3 = 0
     2x2 - 2x - 3x + 3 = 0
     (2x2 - 2x) - (3x - 3) = 0
     2x(x - 1) - 3(x - 1) = 0
     (x - 1)(2x - 3) = 0
     x - 1 = 0 hoặc 2x - 3 = 0
    x - 1 = 0  x = 1
    2x - 3 = 0  2x = 3  x = 1,5
    Vậy tập nghiệm của phương trình đã cho là S = { 1 ; 1,5 }
    (x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
    Giải phương trình
    ?3
    Giải:
    (x - 1)(x2 + 3x - 2) - (x3 - 1) = 0
     (x - 1)[(x2 + 3x - 2) - (x2 + x +1)] = 0
     (x – 1)(x2 + 3x – 2 – x2 – x – 1) = 0
     (x - 1)(2x - 3) = 0
     x - 1 = 0 hoặc 2x - 3 = 0
    x - 1 = 0  x = 1
    2x - 3 = 0  2x = 3  x = 1,5
    Vậy tập nghiệm của phương trình đã cho là S = { 1 ; 1,5 }
    Cách 1
    1. Phương trình tích và cách giải
     x = 1
     x + 1 = 0 hoặc x - 1 = 0 hoặc 2x - 1 = 0
    Vậy tập nghiệm của phương trình (3) là: S = {-1; 1 ; 0,5}
    2x3 = x2 + 2x – 1
    Ví dụ 3: Giải phương trình
    Giải:
    2) x - 1 = 0
    3) 2x - 1 = 0
     x = 0,5
    2x3 = x2 + 2x - 1
     2x3 - x2 - 2x + 1 = 0
     (2x3 - 2x) - (x2 - 1) = 0
     2x(x2 - 1) - (x2 - 1) = 0
     (x2 - 1) (2x - 1) = 0
     (x + 1)(x - 1)(2x - 1) = 0
     x = - 1
    1) x + 1 = 0
    A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0
    Ví dụ 2. Giải phương trình
    2. Áp dụng
    (x + 1)(x + 4) = (2 – x)( 2 + x)
    Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
    Bước 2. Giải phương trình tích rồi kết luận.
    Nhận xét:
    Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
    Bước 2. Giải phương trình tích rồi kết luận.
    Nhận dạng phương trình tích.
    Cách giải phương trình tích A(x)B(x)=0
    Cách giải phương trình đưa được về phương trình tích
    Bước 2: Giải A(x) = 0 và B(x) = 0
    Bước 3: Kết luận nghiệm
    (lấy tất cả các nghiệm của chúng).
    Bước 1:
    Giải phương trình tích rồi kết luận.
    Đưa phương trình đã cho về dạng phương trình tích.
    Bước 2:
    1.Phương trình tích và cách giải
    A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0
    Ví dụ 2. Giải phương trình
    2. Áp dụng
    (x + 1)(x + 4) = (2 – x)( 2 + x)
    B1. Đưa PT đã cho về dạng PT tích.
    B2. Giải PT tích rồi kết luận.
    Nhận xét:
    2x3 = x2 + 2x – 1
    Ví dụ 3: Giải phương trình
    .Trong trường hợp vế trái là tích của nhiều hơn hai nhân tử, ta cũng giải tương tự.
    Bài 3. Giải phương trình:
    x2 (x – 86) = (x – 86)(5x – 6)
     x - 2 = 0 hoặc x - 3 = 0
    1) x – 2 = 0  x = 2
    Vậy tập nghiệm của phương trình đã cho là : S = { 3 ; 2}
    2) x – 3 = 0  x = 3
    x2 (x – 86) = (x – 86)(5x – 6)
     x2 = 5x – 6
     x2 – 5x + 6 = 0
     (x – 2)(x– 3) = 0
    Bạn Hoa giải phương trình trên như sau:
    Theo em bạn Hoa giải đúng hay sai, tại sao?
    Bạn Hoa giải sai, vì đã chia cả 2 vế của phương trình cho x – 86.
    1.Phương trình tích và cách giải
    A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0
    Ví dụ 2. Giải phương trình
    2. Áp dụng
    (x + 1)(x + 4) = (2 – x)( 2 + x)
    B1. Đưa PT đã cho về dạng PT tích.
    B2. Giải PT tích rồi kết luận.
    Nhận xét:
    2x3 = x2 + 2x – 1
    Ví dụ 3: Giải phương trình
    .Trong trường hợp vế trái là tích của nhiều hơn hai nhân tử, ta cũng giải tương tự.
    Bài 3. Giải phương trình:
    x2 (x – 86) = (x – 86)(5x – 6)
     x - 86 = 0 hoặc x - 2 = 0
    hoặc x - 3 = 0
    1) x - 86 = 0  x = 86
    2) x – 2 = 0  x = 2
    Vậy tập nghiệm của phương trình đã cho là : S = { }
    3) x – 3 = 0  x = 3
     x2 (x – 86) – (x – 86)(5x – 6) = 0
     (x – 86)[x2 – (5x – 6)] = 0
     (x – 86)(x2 – 5x + 6) = 0
     (x – 86)(x – 2)(x– 3) = 0
    3 ; 2 ; 86
    3 ; 2 ; 86
    1.Phương trình tích và cách giải
    A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0
    2. Áp dụng
    Vậy tập nghiệm của phương trình đã cho là : S = { 0 ; - 1 }
    Giải phương trình :
    (x3 + x2) + (x2 + x) = 0
     x2 (x + 1) + x(x + 1) = 0
     x(x + 1)2 = 0
     x(x + 1) (x + 1) = 0
     x = 0 hoặc x + 1 = 0
    1) x = 0
    2) x +1 = 0  x = - 1
    ?4
    Bài 22(SGK/17). Giải phương trình:
    f ) x2 – x – (3x – 3) = 0
     (x – 1)(x – 3) = 0
     x – 1 = 0 hoặc x – 3 = 0
    1) x – 1 = 0  x = 1
    x(x – 1) – 3(x – 1) = 0
     (x2 – x ) – (3x – 3) = 0
    2) x – 3 = 0  x = 3
    Vậy tập nghiệm của phương trình đã cho là : S = { 1 ; 3 }
    (5,0 điểm)
    (1,5 điểm)
    (1,5 điểm)
    (2,0 điểm)
    (5,0 điểm)
    (1,5 điểm)
    (1,5 điểm)
    (2,0 điểm)

    HOẠT ĐỘNG NHÓM THEO BÀN

    Dãy 1: ?4 - Dãy 2: ý f)
    1. Phương trình tích và cách giải
    2x3 = x2 + 2x – 1
    Ví dụ 3: Giải phương trình
    A(x)B(x) = 0  A(x) = 0 hoặc B(x) = 0
    Ví dụ 2. Giải phương trình
    2. Áp dụng
    (x + 1)(x + 4) = (2 – x)( 2 + x)
    Bước 1. Đưa phương trình đã cho về dạng phương trình tích.
    Bước 2. Giải phương trình tích rồi kết luận.
    Nhận xét:
    (3)
    Bài 4 : Cho phương trình (ẩn x)
    Giải phương trình khi k = 1
    b) Tìm các giá trị của k sao cho phương trình nhận x = - 2 ….là nghiệm.
    a)
    HƯỚNG DẪN VỀ NHÀ:
    - Học kỹ bài, nhận dạng được phương trình tích
    nắm được cách giải phương trình tích.
    - Làm bài tập 21; 22 (các ý còn lại); 23 SGK /17. Học sinh giỏi và khá làm thêm bài 30; 32 SBT/10
    - Giờ sau : Luyện tập.


    Cảm ơn các em đã học tốt ^^
    Chúc các em chăm ngoan - học giỏi !
    No_avatar

    Cười nhăn răng

     

     
    Gửi ý kiến