Banner-baigiang-1090_logo1
Banner-baigiang-1090_logo2

MUỐN TẮT QUẢNG CÁO?

Thư mục

Quảng cáo

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Tìm kiếm theo tiêu đề

    Tìm kiếm Google

    Quảng cáo

    Quảng cáo

  • Quảng cáo

    Hướng dẫn sử dụng thư viện

    Hỗ trợ kĩ thuật

    Liên hệ quảng cáo

    • (04) 66 745 632
    • 0166 286 0000
    • contact@bachkim.vn

    ViOLET Chào mừng năm học mới

    Chương II. §5. Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc (g.c.g)

    Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
    Nhấn vào đây để tải về
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn:
    Người gửi: Trịnh Thị Liên (trang riêng)
    Ngày gửi: 14h:34' 03-05-2010
    Dung lượng: 157.2 KB
    Số lượt tải: 17
    Số lượt thích: 0 người
    Nhiệt liệt chào mừng
    các thầy cô giáo về dự hội giảng
    Người thực hiện:Trịnh Thị Liên
    Tổ khoa học tự nhiên
    Trường THCS Thụy Phong
    Kiểm tra bài cũ
    Câu1:
    a, Phát biểu định nghĩa 2 tam giác bằng nhau
    b, Cho hình vẽ: Biết ?ABC = ?EDC
    Tìm độ dài các cạnh của ?ABC
    Câu 2: Vẽ ? ABC biết AB = 2 cm ; BC = 4cm ; AC = 3cm
    1/ Vẽ tam giác biết ba cạnh
    *Bài toán:
    B
    C
    4 cm

    Tiết 28 - 5: Trường hợp bằng nhau thứ ba của tam giác
    góc - cạnh- góc (g.c.g)
    Vẽ ?ABC biết AB = 2 cm ; BC = 4cm ;
    AC = 3cm
    Các bước vẽ :
    -Vẽ đoạn thẳng BC = 4 cm
    Trên cùng một nửa mặt phẳng bờ BC, vẽ cung trong tâm B bán kính 2 cm và cung tròn tâm C bán kính 3 cm
    - Hai cung tròn trên cắt nhau tại A
    Bài tập :
    Vẽ ? A`B`C` biết A`B` = AB ; B`C` = BC ;
    A`C` = AC
    - Vẽ các đoạn thẳng AB , AC , ta được tam giác ABC
    1 . Vẽ tam giác biết một cạnh và hai góc kề.

    Tiết 28 - 5: Trường hợp bằng nhau thứ ba của tam giác
    góc - cạnh- góc (g.c.g)
    B
    2 . Trường hợp bằng nhau cạnh - cạnh - cạnh
    *Tính chất:
    Nếu ba canh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
    1/ Vẽ tam giác biết một cạnh và hai góc kề.

    Tiết 28 - 5: Trường hợp bằng nhau thứ ba của tam giác
    góc - cạnh- góc (g.c.g)
    B
    C
    A
    B`
    C`
    2/ Trường hợp bằng nhau thứ 3 của tam giác
    góc - cạnh - góc.
    *Tính chất:
    A`
    Nếu ? ABC và ? A`B`C` có :
    AB = A`B` ; BC = B`C` ; AC = A`C`
    thì ? ABC = ? A`B`C`
    Nếu ba canh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.
    ?2.Tìm các tam giác bằng nhau ở mỗi hình sau :
    H 4
    E
    F
    H
    G
    O
    H 3
    A
    B
    C
    D
    1
    1
    2
    2
    H1
    H 2
    1
    2
    1/ Vẽ tam giác biết một cạnh và hai góc kề.

    Tiết 28 - 5: Trường hợp bằng nhau thứ ba của tam giác
    góc - cạnh- góc (g.c.g)
    B
    C
    A
    B`
    C`
    2/ Trường hợp bằng nhau thứ 3 của tam giác
    góc - cạnh - góc.
    *Tính chất: (SGK - trang 121)
    A`
    Nếu ? ABC và ? A`B`C` có :
    B = B` ; BC = B`C` ; C = C`
    thì ? ABC = ? A`B`C`
    3/ Hệ quả:
    a. Hệ quả 1: (SGK - trang 122)
    1/ Vẽ tam giác biết một cạnh và hai góc kề.

    Tiết 28 - 5: Trường hợp bằng nhau thứ ba của tam giác
    góc - cạnh- góc (g.c.g)
    B
    C
    A
    B`
    C`
    2/ Trường hợp bằng nhau thứ 3 của tam giác
    góc - cạnh - góc.
    *Tính chất: (SGK - trang 121)
    A`
    Nếu ? ABC và ? A`B`C` có :
    B = B` ; BC = B`C` ; C = C`
    thì ? ABC = ? A`B`C`
    3/ Hệ quả:
    a. Hệ quả 1: (SGK - trang 122)

    b. Hệ quả 2: (SGK - Trang 122)
    1/ Vẽ tam giác biết một cạnh và hai góc kề.

    Tiết 28 - 5: Trường hợp bằng nhau thứ ba của tam giác
    góc - cạnh- góc (g.c.g)
    2/ Trường hợp bằng nhau thứ 3 của tam giác
    góc - cạnh - góc.
    *Tính chất: (SGK - trang 121)
    3/ Hệ quả:
    a. Hệ quả 1: (SGK - trang 122)
    b. Hệ quả 2: (SGK - Trang 122)
    ABC = EDF

    B = E ; BC = EF ; C = F

    C =90o - B ; F= 900- E

    ABC ; A = 90o
    EDF; D = 90o
    BC = EF; B = E

    KL ABC = DEF

    GT
    Bài tập : Nhận biết trường hợp bằng nhau của hai tam giác trong mỗi hình vẽ sau :
    Tam giác thường
    Tam giác vuông
    1/ C-C-C
    2/ C-G-C
    3/ G-C-G
    1/ C-G-C
    2/ G-C-G
    3/ Cạnh huyền-góc nhọn
    H1
    H2
    H3
    H4
    H5
    H6
    1/ Vẽ tam giác biết một cạnh và hai góc kề.

    Tiết 28 - 5: Trường hợp bằng nhau thứ ba của tam giác
    góc - cạnh- góc (g.c.g)
    2/ Trường hợp bằng nhau thứ 3 của tam giác
    góc - cạnh - góc.
    *Tính chất: (SGK - trang 121)
    3/ Hệ quả:
    a. Hệ quả 1: (SGK - trang 122)
    b. Hệ quả 2: (SGK - Trang 122)
    Bài 34 (SGK_123)
    Trên mỗi hình 98, 99 có các tam giác nào bằng nhau? Vì sao?
    A
    C
    D
    B
    n
    n
    m
    m
    H 98
    ∆ ABC = ∆ ABD (g.c.g)
    B
    A
    C
    D
    E
    H 99
    ∆ ADB = ∆ AEC
    ∆ ADC = ∆ AEB
    1/ Vẽ tam giác biết một cạnh và hai góc kề.

    Tiết 28 - 5: Trường hợp bằng nhau thứ ba của tam giác
    góc - cạnh- góc (g.c.g)
    2/ Trường hợp bằng nhau thứ 3 của tam giác
    góc - cạnh - góc.
    *Tính chất: (SGK - trang 121)
    3/ Hệ quả:
    a. Hệ quả 1: (SGK - trang 122)
    b. Hệ quả 2: (SGK - Trang 122)
    Bài 34 (SGK_123)
    Trên mỗi hình 98, 99 có các tam giác nào bằng nhau? Vì sao?
    A
    C
    D
    B
    n
    n
    m
    m
    H 98
    ∆ ABC = ∆ ABD (g.c.g)
    H
    AH CD
    AHC = AHD = 90o
    AHC = AHD
    1/ Vẽ tam giác biết một cạnh và hai góc kề.

    Tiết 28 - 5: Trường hợp bằng nhau thứ ba của tam giác
    góc - cạnh- góc (g.c.g)
    2/ Trường hợp bằng nhau thứ 3 của tam giác
    góc - cạnh - góc.
    *Tính chất: (SGK - trang 121)
    3/ Hệ quả:
    a. Hệ quả 1: (SGK - trang 122)
    b. Hệ quả 2: (SGK - Trang 122)
    Hướng dẫn về nhà:
    Học thuộc lí thuyết.
    Làm BT 35; 36; 37/ SGK - 123
    BT bổ sung:
    Cho tam giác ABC có góc A bằng 90o , AB = AC . Lấy D thuộc AB , E thuộc AC sao cho AD = AE. Đường thẳng qua D và vuông góc với BE cắt CA ở K.
    Chứng minh AK = AC
     
    Gửi ý kiến

    ↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng ZIP và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓