Violet
Baigiang
8tuoilaptrinh

Tìm kiếm theo tiêu đề

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương IV. §5. Dấu của tam thức bậc hai

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Đinh Chí Vinh (trang riêng)
Ngày gửi: 08h:43' 19-01-2010
Dung lượng: 1.6 MB
Số lượt tải: 102
Số lượt thích: 0 người
Chào mừng các thầy, cô giáo
về dự giờ lớp 10A1
THPT Lê Thị Pha-Bảo Lộc
Giáo viên: Đinh Chí Vinh
Môn: Đại số 10A
Cho các đồ thị:
f(x) = 2x2-7x+5
f(x) = -x2 + 4x-4
f(x) =x2-2x+5
BÀI CŨ
Dựa vào đồ thị, tìm các giá trị của x để f(x) >0, f(x)<0
y
y
y
x
x
x
Bài dạy:
DẤU CỦA TAM THỨC BẬC HAI
TAM THỨC BẬC HAI
ĐỊNH NGHĨA
Tam thức bậc hai (đối với x) là biểu thức dạng ax2 + bx + c, trong đó a, b, c là những số cho trước với a ≠ 0.
NGHIỆM CỦA TAM THỨC BẬC HAI
Nghiệm của tam thức bậc hai f(x) = ax2 + bx + c chính là nghiệm của phương trình bậc hai ax2 + bx + c = 0.
BIỆT THỨC
Các biệt thức Δ = b2 – 4ac và Δ` = b`2 – 4ac với b = 2b` theo thứ tự cũng được gọi là biệt thức và biệt thức thu gọn của tam thức bậc hai f(x) = ax2 + bx + c.
II. DẤU CỦA TAM THỨC BẬC HAI
f(x) = 2x2-7x+5
f(x) = -x2 +4x-4
f(x) =x2-2x+5
Quan sát đồ thị rút ra mối liên hệ về dấu của f(x) ứng với x tuỳ ý tuỳ theo dấu của biệt thức Δ (Δ’) và hệ số a của f(x)
f(x) =2x2-7x+5 ta có: Δ = 3 >0 , a=2>0 f(x) >0 x<1 hoặc x> 5/2
. af(x) >0 với x<1 hoặc x> 5/2
f(x) < 0 1f(x) =- -x2 + 4x-4 ta có f(x) < 0 ,a = -1 <0, Δ =0 af(x) >0 với
f(x) = x2-2x+5 ta có f(x) > 0 , a = 1>0, Δ’ = -4<0 af(x) >0 với

y
x
x
x
y
y
Δ < 0 (Tam thức bậc hai vô nghiệm).
a>0
a<0
Δ = 0 (Tam thức bậc hai có nghiệm kép xo = ).
a > 0
a < 0
h.3
h.4
Δ > 0 (Tam thức bậc hai có 2 nghiệm x1 và x2 (x1 < x2)).
a > 0
a < 0
0
x
y
0
y
x
h.5
h.6
x1
x2
x1
x2
ĐỊNH LÝ VỀ DẤU
CỦA TAM THỨC BẬC HAI
Cho tam thức bậc hai f(x) = ax2 + bx + c (a≠0).
Nếu Δ< 0 thì f(x) cùng dấu với hệ số a với moi x .
Nếu Δ = 0 thì f(x) cùng dấu với hệ số a với mọi x ≠ .

Nếu Δ > 0 thì f(x) có 2 nghiệm x1 và x2 (x1 < x2). Khi đó, f(x) trái dấu với hệ số a với mọi x nằm trong khoảng (x1; x2) (tức là với x1 < x < x2), và f(x) cùng dấu với hệ số a với mọi x nằm ngoài đoạn [x1; x2] (tức là với x < x1 hoặc x > x2).
HOẠT ĐỘNG 1
Xét dấu của các biểu thức sau:
Nhóm 1: f(x) = -2x2+5x+7
Nhóm 2: g(x) = 2x2 -x +7
Nhóm 3: h(x) = -9x2+12x -4
Nhóm 4:
Trả lời
Vì a = -2 <0, f(x) có 2 nghiệm phân biệt x1 = -1, x2 = 7/2. Bảng kết quả:
Vì a = 2>0, tam thức g(x) có Δ = -55 <0 nên g(x) = 2x2 -x +7 >0
Vì a =-9<0 tam thức h(x) có Δ = 0, có nghiệm kép x = 2/3 nên h(x) =-9x2+12x -4 <0
Nghiệm của tử cho 2x2 –x-1 =0 x = -1/2, x = 1. Nghiệm của mẫu cho x2 -4 =0 x=-2 , x =2
Ta có bảng kết quả:
NHẬN XÉT
Từ định lý dấu của tam thức bậc hai tìm điều kiện để tam thức luôn âm hoặc luôn dương, không âm, không dương với mọi x thuộc R ?
HOẠT ĐỘNG 2:
Nhóm 1:Tìm các giá trị của m để biểu thức sau luôn dương:
(m+2)x2 +2(m+2)x +m+3
Nhóm 2: Với giá trị nào của m đa thức:
f(x) = (m+1)x2+ 2(m+1)x+m- 1
không dương với mọi x thuộc R
TRẢ LỜI
CHÚ Ý: Trong đa thức f(x) chưa phải là tam thức bậc hai thực sự cần xét trường hợp làm cho hệ số a = 0, tránh bỏ sót giá trị của tham số thoả mãn yêu cầu bài toán
SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH LÂM ĐỒNG
TRƯỜNG THPT LÊ THỊ PHA
Giáo viên:Đinh Chí Vinh
TIẾT HỌC ĐẾN ĐÂY KẾT THÚC CHÂN THÀNH CÁM ƠN QUÝ THẦY CÔ VÀ CÁC EM ĐÃCHÚ Ý THEO DÕI
 
Gửi ý kiến