Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương II. §2. Hàm số bậc nhất

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Công Tỉnh
Ngày gửi: 20h:19' 17-10-2014
Dung lượng: 938.0 KB
Số lượt tải: 285
Số lượt thích: 0 người
toán9
Năm học 2014 - 2015
Người thực hiện: Nguyễn Công Tỉnh
nhiệt liệt chào mừng các thầy cô về dự giờ thăm lớp 9A
Phòng GD & ĐT Lục Nam * Trường THCS Khám Lạng*
Giáo viên thực hiện: Nguyễn Công Tỉnh
Tiết 21: HÀM SỐ BẬC NHẤT
a. Bài toán: Một xe ô tô chở khách đi từ bến xe Phía nam Hà Nội vào Huế với vận tốc trung bình 50km/h. Hỏi sau t giờ xe ô tô đó cách trung tâm Hà Nội bao nhiêu kilômét? Biết rằng bến xe Phía nam cách trung tâm Hà Nội 8km.
?1 Hãy điền vào chỗ trống (…) cho đúng.
Sau 1 giờ, ô tô đi được:
Sau 2 giờ, ô tô đi được:
Sau t giờ, ô tô đi được:
Sau t giờ, ô tô cách TT Hà Nội là: s =
50.1 (km)
50.t (km)
50.t + 8 (km)
1. Khái niệm về hàm số bậc nhất
50.2 (km)
?2 Tính các giá trị tương ứng của s khi cho t lần lượt lấy các giá trị 1 giờ; 2 giờ; 3 giờ; 4 giờ; …
Hãy giải thích vì sao s là hàm số của t?
Vì: + s phụ thuộc vào t.
+ Ứng với mỗi giá trị của t chỉ có một giá trị tương ứng của s.
Do đó s là hàm số của t.
s = 50.t + 8
y
x
a
(a ≠ 0)
b
s = 50.t + 8
Tiết 21: HÀM SỐ BẬC NHẤT
1. Khái niệm về hàm số bậc nhất
50.1+8
=58
50.2+8
=108
50.3+8
=158
50.4+8
50.t+8
ĐỊNH NGHĨA
Hàm số bậc nhất là hàm số được cho bởi công thức:
y = ax + b
trong đó a , b là các số cho trước và a ≠ 0
y = ax + b (a ≠ 0)
Chú ý: Khi b = 0, hàm số có dạng y = ax (đã học ở lớp 7)
a ≠ 0
y = ax + b
Tiết 21: HÀM SỐ BẬC NHẤT
1. Khái niệm về hàm số bậc nhất
BÀI TẬP : Trong các hàm số sau hàm số nào là hàm số bậc nhất? . Hãy xác định các hệ số a, b của chúng.




(nếu m ≠ 1)
1
2
-5
4
0,5
0
m - 1
3
ĐỊNH NGHĨA
y = ax + b (a ≠ 0)
Tiết 21: HÀM SỐ BẬC NHẤT
1. Khái niệm về hàm số bậc nhất
Ví dụ 1: Xét hàm số y = f(x) = -3x +1

Hàm số y = f(x) = -3x + 1 xác định với mọi x thuộc R

lấy x1, x2 thuộc R sao cho x1< x2 hay x1- x2<0
Xét f(x1 ) - f (x2) = (-3x1 + 1) – (-3x2 + 1) = -3x1 + 3x 2= -3(x1 - x2) > 0
hay f (x1) > f(x2 )
Vậy hàm số y = -3x + 1 nghịch biến trên R.
2. Tính chất:
y = ax + b (a ≠ 0)
ĐỊNH NGHĨA
Tiết 21: HÀM SỐ BẬC NHẤT
1. Khái niệm về hàm số bậc nhất
y = ax + b (a ≠ 0)
?3. Chứng minh hàm số bậc nhất y = 3x + 1
đồng biến trên R
Chứng minh:
Hàm số y = f(x) = 3x + 1 xác định
với mọi x thuộc R
lấy x1, x2 thuộc R sao cho x1< x2 hay x1- x2, < 0
Xét f(x1 ) - f (x2) = (3x1 + 1) – (3x2 + 1)
= 3x1 - 3x2 = 3(x1 - x2) <0
hay f(x1 ) < f (x2)
Vậy hàm số y = 3x + 1 đồng biến trên R.
2. Tính chất:
Tiết 21: HÀM SỐ BẬC NHẤT
1. Khái niệm về hàm số bậc nhất
Ví dụ 1: Xét hàm số y = f(x) = -3x +1

Hàm số y = f(x) = -3x + 1
xác định với mọi x thuộc R

lấy x1, x2 thuộc R sao cho x1< x2
hay x1- x2<0
Xét f(x1 ) - f (x2)
= (-3x1 + 1) – (-3x2 + 1)
= -3x1 + 3x 2= -3(x1 - x2) > 0
hay f (x1) > f(x2 )
Vậy hàm số y = -3x + 1
nghịch biến trên R.
y = ax + b (a ≠ 0)
Hàm số y = 3x + 1 đồng biến trên R.
TỔNG QUÁT
Hàm số bậc nhất y=ax+b xác định với mọi giá trị
của x thuộc R và có tính chất sau :
a) Đồng biến trên R khi a >0
b) Nghịch biến trên R khi a < 0
2. Tính chất:
Tiết 21: HÀM SỐ BẬC NHẤT
1. Khái niệm về hàm số bậc nhất
Hàm số y = -3x + 1 nghịch biến trên R.
Đồng biến
Nghịch biến
Đồng biến
Đồng biến khi m>1
Nghịch biến khi m<1
y = ax + b (a ≠ 0)
2. Tính chất:
Tiết 21: HÀM SỐ BẬC NHẤT
1. Khái niệm về hàm số bậc nhất
Bài tập: Điền vào chỗ trống ( .) trong bài tập sau:
Cho hàm số y = (m-5)x + 3 (m là tham số)
a.Hàm số trên là hàm số bậc nhất khi m-5. m.
b.Hàm số đồng biến khi m - 5 . m .
c.Hàm số nghịch biến khi . m ...
> 5
< 5
m - 5 < 0
> 0
Đề thi tuyển sinh THPT tỉnh Bắc Giang năm học 2014-2015:
Câu I.2-Tìm m để hàm số y=(1-m)x-2 ,(m ≠ 1)nghịch biến trên R
Tiết 21: HÀM SỐ BẬC NHẤT
Đề thi tuyển sinh THPT tỉnh Bắc Giang năm học 2009-2010:
Câu II.2-Hàm số y=2009x+2010 đồng biến hay nghịch biến
trên R?Vì sao?
Đề thi tuyển sinh THPT tỉnh Bắc Giang năm học 2008-2009:
Câu II.1-Hàm số y= -2x+3 đồng biến hay nghịch biến?
Bài tập2:
Cho hàm số sau y = (-m+3)x +5. Tìm các giá trị của m để hàm số trên là :
a, Hàm số bậc nhất
b, Đồng biến
c, Nghịch biến
Trả lời:
a, Hàm số trên là hàm số bậc nhất khi : -m+3≠ 0  m ≠3
b, Hàm số đồng biến khi –m+3 >0  -m > -3  m <3
c, Hàm số nghich biến khi –m+3 < 0  m >3
y = ax + b (a ≠ 0)
2. Tính chất:
Tiết 21: HÀM SỐ BẬC NHẤT
1. Khái niệm về hàm số bậc nhất
Hàm số* Bậc nhất *
ĐỊNH NGHĨA
y = ax + b (a ≠ 0)
Đồ thị hàm số bậc nhất
Bản đồ tư duy
Hàm số* Bậc nhất *
ĐỊNH NGHĨA
y = ax + b (a ≠ 0)
Đồ thị hàm số bậc nhất
HÀM SỐ
Hàm số
khác
Định nghĩa
Tính chất:
Đồ thị
Bản đồ tư duy
VỀ NHÀ
+Lập bản đồ tư duy của bài
+ Nắm được: Khái niệm hàm số bậc nhất,
tính đồng biến nghịch biến của hàm số bậc nhất.
+ Làm bài tập 8,9,10,11 - 48( Sgk)
+ Đọc trước bài đồ thị hàm số
Phòng GD & ĐT Lục Nam * Trường THCS Khám Lạng*
Giáo viên thực hiện: Nguyễn Công Tỉnh
1. Hàm số bậc nhất xác định trên tập hợp số nào ?
Giải ô chữ
1
2
3
4
5
2. Hàm số bậc nhất y = a x + b với a < 0 có tính chất gì ?
3.Tập hợp tất cả các điểm biểu diễn các cặp tương ứng (x,f(x)) trên mặt phẳng toạ là.... của hàm số f(x).
4. Cho biÕt bËc cña ®a thøc f(x) = 2x3– 7x + 5
5. Phép biến đổi làm mất mẫu của biểu thức lấy
căn được gọi là ..... của biểu thức lấy căn.
468x90
 
Gửi ý kiến