Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương II. §3. Hệ thức lượng trong tam giác

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: ST
Người gửi: Lê Thị Hương
Ngày gửi: 09h:05' 22-10-2009
Dung lượng: 1'015.5 KB
Số lượt tải: 83
Số lượt thích: 0 người
Sở giáo dục và đào tạo Yên Bái
Trường THPT TRần Nhật Duật
Tiết 23
Các hệ thức lượng trong tam giác
Người thực hiện: Nguyễn Xuân Tuyên
Kiểm tra bài cũ
Câu hỏi 1 : Em hãy phát biểu định lí cosin trong tam giác
a2 = b2 + c2 - 2bc cosA
b2 = a2 + c2 - 2ac cosB
c2 = a2 + b2 - 2ab cosC
Câu hỏi 2 : Em hãy phát biểu định lí sin trong tam giác
Trả lời : Trong tam giác ABC , với R là bán kính đường tròn ngoại tiếp , ta có :
Trả lời : Với mọi tam giác ABC ta có :
(Tiếp theo )
§ 3 - C¸c hÖ thøc l­îng trong tam gi¸c
( ha , hb , hc lần lượt là các đường cao kẻ từ các đỉnh A,B,C )
3. công thức tính diện tích tam giác
Chứng minh :
Do đó ta có :
Nếu C = 900 thì ha = b và sinC = 1
nên ta vẫn có công thức trên
ta được
? ha = bsinC
Ví dụ 1 :
Tính diện tích , bán kính đường tròn nội tiếp , ngoại tiếp tam giác ABC có ba cạnh là a = 13 , b = 14 , c = 15
Giải :
Ta có :
áp dụng công thức Hê rông

= 84
4. Công thức độ dài đường trung tuyến
Định lý : Trong mọi tam giác ABC , ta đều có :
Trong đó ma , mb , mc là độ dài các đường trung tuyến lần lượt kẻ từ các đỉnh A , B , C của ? ABC
*C2: Gọi AM là đường trung tuyến
vẽ từ A , AM = ma . Ta có :
Các đẳng thức khác chứng minh tương tự
( c2 + b2 +
2bc cosA )
( c2 + b2 +
b2 + c2 - a2 )
?
Chứng minh :(C1: Dựa vào định lý cosin)
Ví dụ 2 : Cho hai điểm A , B cố định . Tìm quỹ tích những điểm M thoả mãn điều kiện : MA2 + MB2 = k2 ( k là một số cho trước )
Giải:
O
Giả sử có điểm M thoả mãn : MA2 + MB2 = k2
Gọi O là trung điểm đoạn thẳng AB , thì OM là đường trung tuyến trong ? MAB nên :
Ta xét các trường hợp :
* Nếu 2k2 > AB2
* Nếu 2k2 < AB2 thì quỹ tích là tập rỗng
* Nếu 2k2 = AB2
= R
Khi đó quĩ tích M là đường tròn tâm O , bán kính R
thì OM = 0 hay M trùng O
OM2 =
* Chú ý :Từ công thức độ dài đường trung tuyến ta có:
b) Chứng minh rằng trong một hình bình hành tổng bình phương các cạnh bằng tổng bình phương hai đường chéo
Giải:
a) áp dụng định lí đường trung tuyến vào ? BAC và ? DAC , ta có :
BA2 + BC2 =
DA2 + DC2 =
Ví dụ 3 : Cho tứ giác ABCD ; I , J là trung điểm của AC và BD
a)CM hệ thức : AB2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4IJ2
Cộng hai ĐT trên theo từng vế , ta có :
AB2 + BC2 + CD2 + DA2 =
áp dụng định lí đường trung tuyến vào ? IBD , ta có :
BI2 + DI2 =
Thay vào (*) , ta được :
AB2 + BC2 + CD2 + DA2 =
2( BI2 + DI2 ) +AC2 (*)
AC2 + BD2 + 4IJ2
b) Chứng minh rằng trong một hình bình hành tổng bình phương các cạnh bằng tổng bình phương hai đường chéo
Ví dụ 3 : Cho tứ giác ABCD ; I , J là trung điểm của AC và BD
a)CM hệ thức : AB2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4IJ2
Giải:
b) Nếu ABCD là hình bình hành thì
I và J trùng nhau nên IJ = 0 và ta có:
AB2 + BC2 + CD2 + DA2 = AC2 + BD2
Vậy :Trong một hình bình hành
tổng bình phương các cạnh bằng
tổng bình phương hai đường chéo
Bài tập về nhà: 6,7,8,9,10,11
(trang59,60)SGK
Cám ơn các Thầy giáo, Cô giáo cùng tập thể lớp 10a1 đã tạo điều kiện giúp đỡ tôi hoàn thành bài giảng
 
Gửi ý kiến