Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức thư viện

Khắc phục hiện tượng không xuất hiện menu Bộ công cụ Violet trên PowerPoint và Word

12099162 Kính chào các thầy, cô. Khi cài đặt phần mềm , trên PowerPoint và Word sẽ mặc định xuất hiện menu Bộ công cụ Violet để thầy, cô có thể sử dụng các tính năng đặc biệt của phần mềm ngay trên PowerPoint và Word. Tuy nhiên sau khi cài đặt phần mềm , với nhiều máy tính sẽ...
Xem tiếp

Quảng cáo

Hỗ trợ kĩ thuật

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương II. §1. Nhắc lại và bổ sung các khái niệm về hàm số

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Trịnh Quang Huy
Ngày gửi: 15h:25' 15-11-2021
Dung lượng: 986.0 KB
Số lượt tải: 418
Số lượt thích: 0 người
Chương II- HÀM SỐ BẬC NHẤT
§1. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM VỀ HÀM SỐ
1. Khái niệm hàm số.
Chương II- HÀM SỐ BẬC NHẤT
§1. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM VỀ HÀM SỐ
* Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x , và x là biến số.
Ví dụ 1: a) y là hàm số của x được cho bởi bảng sau:

b) Hàm số cho bằng công thức
* Khi x thay đổi mà y luôn nhận giá trị không đổi thì y được gọi là hàm hằng
* Ví dụ : y =-3, y= 9 là các hàm hằng
Khi y là hàm số của x, ta có thể viết
Ví dụ: , ta còn có thể viết
Khi đó, thay cho câu “ khi x bằng 3 thì giá trị của y là 11”, ta viết
Bài 1: (SBT tr 56)
Trong các bảng sau ghi các giá trị tương ứng của x và y. Bảng nào xác định y là hàm số của x? Vì sao?
Bảng a: Mỗi giá trị của x xác định được tương ứng duy nhất một giá trị của y, nên y là hàm số của x.
Đáp án:
Bảng b: Ta có tại x = 3 xác định hai giá trị tương ứng của y là y1 = 6 và y2 = 4 nên y không là hàm số của x.
chỉ một ( duy nhất)
y gọi là hàm số của x , và x là biến số.
* Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x , và x là biến số.
phụ thuộc
Tính f(0); f(1); f(2); f(3); f(-2); f(-10).
Đáp án:
2. Đồ thị hàm số.
?2 a/ Biểu diễn các điểm sau trên mặt phẳng toạ độ Oxy :
b/ Vẽ đồ thị của hàm số y = 2x.
A(1;2)
2. Đồ thị hàm số.
1/ Tập hợp tất cả các điểm biểu diễn cặp giá trị tương ứng (x; f(x) ) trên mặt phẳng toạ độ gọi là đồ thị của hàm số y = f(x).
2/ Đồ thị của hàm số y = ax ( a ≠ 0) là đường thẳng đi qua gốc toạ độ.
Kết luận:
3/ Khi vẽ đồ thị của hàm số y = ax chỉ cần xác định thêm một điểm thuộc đồ thị khác gốc O.

3. Hàm số đồng biến, nghịch biến.
? 3 Tính giá trị y tương ứng của các hàm số y = 2x+1 và hàm số
y = -2x + 1 theo giá trị đã cho của biến x rồi điền vào bảng sau:
Nhận xét: Hai hàm số trên xác định với....................
* Đối với hàm số y = 2x+1 khi x tăng lên thì các giá trị tương ứng của y .....................
* Đối với hàm số y = -2x+1 khi x tăng lên thì các giá trị tương ứng của y ......................
tăng lên
giảm đi
ta nói hàm số y = 2x + 1 đồng biến trên R.
ta nói hàm số y = - 2x + 1 nghịch biến trên R.
-4
-3
-2
-1
0
1
2
3
4
6
5
4
3
2
1
0
-1
-2
mọi x thuộc R.
Tổng quát:
a / Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) cũng tăng lên thì hàm số y = f(x) được gọi là đồng biến trên R ( gọi tắt là hàm số đồng biến)
b / Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi thì hàm số y = f(x) được gọi là nghịch biến trên R ( gọi tắt là hàm số nghịch biến
Cho hàm số y = f(x) xác định với mọi x thuộc R.
Nói cách khác, với x1, x2 bất kì thuộc R:
Nếu x1 < x2 mà f(x1) < f (x2) thì hàm số y = f( x) đồng biến trên R.
Nếu x1 < x2 mà f(x1) > f (x2) thì hàm số y = f( x) nghịch biến trên R.
Bài tập:
Trong các bảng các giá trị tương ứng của x và y bảng nào cho ta hàm số đồng biến? nghịch biến? (Với y là hàm số của x ).
Bảng a: khi giá trị của x tăng lên thì giá trị tương ứng của y giảm đi nên y là hàm số nghịch biến.
Bảng b: khi giá trị của x tăng lên thì giá trị tương ứng của y tăng lên vậy y là hàm số đồng biến.
Bảng c: khi giá trị của x tăng lên thì giá trị tương ứng của y không thay đổi vậy y là hàm hằng ( hàm số không đồng biến , không nghịch biến).
Hàm hằng không đồng biến, không nghịch biến
KIẾN THỨC GHI NHỚ:
1. Khái niệm hàm số: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x, x gọi là biến số .
2. Đồ thị hàm số: Tập hợp tất cả các điểm biểu diễn cặp giá trị tương ứng (x; f(x)) trên mặt phẳng toạ độ gọi là đồ thị của hàm số y = f(x).
+ Đồ thị của hàm số y = ax ( a ≠ 0) là đường thẳng đi qua gốc toạ độ.
+ Khi vẽ đồ thị của hàm số y = ax chỉ cần xác định thêm một điểm thuộc đồ thị khác gốc O.
3. Hàm đồng biến, nghịch biến:
Với mọi x1, x2 bất kì thuộc R:
Nếu x1 < x2 mà f(x1) < f (x2) thì hàm số y = f( x) đồng biến trên R.
Nếu x1 < x2 mà f(x1) > f (x2) thì hàm số y = f( x) nghịch biến trên R.
Bài 2: SGK tr 45.
a/ Tính các giá trị tương ứng của y theo các giá trị của x rồi điền vào bảng sau:
b/ Hàm số đã cho là hàm số đồng biến hay nghịch biến? Vì sao?.
Trả lời 2b: Khi x lần lượt nhận các giá trị tăng lên thì giá trị tương ứng của hàm số lại giảm đi. Vậy hàm số đã cho nghịch biến trên R.
Bài 3: SGK tr 45.
Cho hai hàm số y = 2x và y = -2x.
a/ Vẽ trên cùng một mặt phẳng toạ độ đồ thị của hai hàm số đã cho.
b/ Trong hai hàm số đã cho, hàm số nào đồng biến ? Hàm số nào nghịch biến? Vì sao?.
b/ * Đối với hàm số y = 2x thì x tăng lên thì giá trị tương ứng của hàm số cũng tăng lên. Do đó hàm số y = 2x đồng biến trên R
* Đối với hàm số y =- 2x thì x tăng lên thì giá trị tương ứng của hàm số lại giảm đi. Do đó hàm số y = - 2x nghịch biến trên R.
Bài 3: SGK tr 45.
(Từ trái qua phải đồ thị đi từ dưới lên trên)
( Từ trái qua phải đồ thị đi từ trên xuống dưới)
HƯỚNG DẪN VỀ NHÀ
- Bài 1, 5, 6, 7 SGK tr 45 - 46; bài 2,3,4,5 SBT tr56-57.
- Bài tập bổ xung ( dành cho HS khá giỏi) Chứng minh với mọi x thuộc R các hàm số sau luôn đồng biến khi
a > 0 và nghịch biến khi a < 0?
a/ y = ax + b b/ y = ax3.
- Ôn tập các khái niệm đã học về hàm số, vận dụng vào làm các bài tập dưới đây:
 
Gửi ý kiến