Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương II. §1. Nhắc lại và bổ sung các khái niệm về hàm số

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thị Bích Liên
Ngày gửi: 04h:27' 21-10-2008
Dung lượng: 404.5 KB
Số lượt tải: 274
Số lượt thích: 0 người
Trường THCS Quang Trung
Đại số 9: Chương II - Hàm số bậc nhất.
Tiết 19:
Bài 1- Nhắc lại, bổ sung các khái niệm về hàm số
Giáo viên: Nguyễn Thị Bích Liên.
Kiểm tra bài cũ (hđ nhóm đôi- phiếu bài tập):
Bài tập 1: Hãy chọn các cụm từ trong bảng sau điền vào chỗ còn thiếu cho đúng?
1/ Nếu đại lượng y.....................vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được..................... giá trị tương ứng của y thì y được gọi là.................... của x, x gọi là...................
3/ Tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x; y) trên mặt phẳng toạ độ được gọi là .................của hàm số y = f(x)
4/ Đồ thị của hàm số y = a.x( a ? 0) là một ........................ đi qua gốc toạ độ.
phụ thuộc
chỉ một
hàm số
biến số
đồ thị
đường thẳng
2/ Khi y là hàm số của x ta có thể viết y = f(x). Ta kí hiệu f(x0) là ....................................... y = f(x) tại x = x0.
giá trị của hàm số
1. Khái niệm hàm số.
Chương II- Hàm số bậc nhất
§1. Nh¾c l¹i vµ bæ sung c¸c kh¸i niÖm vÒ hµm sè
Tiết 19

Khi nào thì đại lượng y được gọi là hàm số của đại lượng thay đổi x?
1. Khái niệm hàm số.
Chương II- Hàm số bậc nhất
§1. Nh¾c l¹i vµ bæ sung c¸c kh¸i niÖm vÒ hµm sè
* Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x , và x là biến số.
Tiết 19
Ví dụ 1: a/ y là hàm số của x được cho bởi bảng sau:

b/ y là hàm số của x cho bởi công thức:
y = 2x
y = 2x + 3
* Hàm số có thể được cho bằng bảng, bằng công thức.
Bài tập 2: Trong các bảng sau ghi các giá trị tương ứng của x và y. Bảng nào xác định y là hàm số của x? Vì sao?
Bài tập 2: Trong các bảng sau ghi các giá trị tương ứng của x và y. Bảng nào xác định y là hàm số của x? Vì sao?
Bài tập 2: Trong các bảng sau ghi các giá trị tương ứng của x và y. Bảng nào xác định y là hàm số của x? Vì sao?
Bài tập 2: Trong các bảng sau ghi các giá trị tương ứng của x và y. Bảng nào xác định y là hàm số của x? Vì sao?
? Hàm số được cho bởi bảng c có gì đặc biệt?
1. Khái niệm hàm số.
Chương II- Hàm số bậc nhất
§1. Nh¾c l¹i vµ bæ sung c¸c kh¸i niÖm vÒ hµm sè
* Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một ( duy nhất) giá trị tương ứng của y thì y gọi là hàm số của x , và x là biến số.
Tiết 19
* Khi x thay đổi mà y luôn nhận được giá trị không đổi thì hàm số y được gọi là hàm hằng.
* Hàm số có thể được cho bằng bảng, bằng công thức.
* Khi y là hàm số của x ta có thể viết: y = f(x), y = g(x)..
Tính f(0); f(1); f(2); f(3); f(-2); f(-10).
Đáp án:
(HS hoạt động cá nhân - Làm vào vở)
?1
Bài tập 3: y là hàm số của x được cho bởi bảng sau (VD 1a):
a) Viết tất cả các cặp giá trị tương ứng (x; y) xác định hàm số trên ?
b) Biểu diễn các điểm xác định bởi các cặp số đó trên mặt phẳng toạ độ Oxy ?
(Hoạt động cá nhân - Làm vào phiếu bài tập)
2. Đồ thị hàm số.
? Đồ thị của hàm số y = f(x) là gì ?
* Tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) trên mặt phẳng toạ độ được gọi là đồ thị của hàm số y = f(x)
2. Đồ thị hàm số.
Bài tập 4: Vẽ đồ thị của hàm số y = 2x.
A(1;2)
2. Đồ thị hàm số.
* Cách vẽ:
Với x = 1 thì y = 2
Vậy đường thẳng OA là đồ thị của hàm số y = 2x.
=> Điểm A(1; 2) thuộc đồ thị.
* Tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) trên mặt phẳng toạ độ được gọi là đồ thị của hàm số y = f(x)
(Hoạt động cá nhân - Làm vào phiếu bài tập)
2. Đồ thị hàm số.
* Đồ thị của hàm số y = ax ( a ? 0) là đường thẳng đi qua gốc toạ độ.
* Khi vẽ đồ thị của hàm số y = ax chỉ cần xác định thêm một điểm thuộc đồ thị khác gốc O.
* Tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) trên mặt phẳng toạ độ được gọi là đồ thị của hàm số y = f(x)

Bài tập 5: Điền vào chỗ trống các số hoặc các chữ để được kết quả đúng:
-4
-3
-2
-1
0
1
2
3
4
6
5
4
3
2
1
0
-1
-2
HS làm vào phiếu bài tập: -Tổ 1, 3 làm phần a (câu 1, 2) trước. - Tổ 2, 4 làm phần b (câu 1, 2) trước.
2) Hai hàm số trên xác định với....................
a) Đối với hàm số y = 2x+1 khi x tăng lên thì các giá trị tương ứng của y .....................
b) Đối với hàm số y = -2x+1 khi x tăng lên thì các giá trị tương ứng của y ......................
Ta nói hàm số y = 2x + 1 đồng biến trên R.
mọi x thuộc R.
tăng lên
giảm đi
Ta nói hàm số y = - 2x + 1 nghịch biến trên R.
1)
3. Hàm số đồng biến, nghịch biến.
Tổng quát (sgk):
a / Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) cũng tăng lên thì hàm số y = f(x) được gọi là đồng biến trên R.
b / Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi thì hàm số y = f(x) được gọi là nghịch biến trên R.
Cho hàm số y = f(x) xác định với mọi x thuộc R.
3. Hàm số đồng biến, nghịch biến.
Bài tập 6:
Trong bảng các giá trị tương ứng của x và y, bảng nào cho ta hàm số đồng biến? nghịch biến? (Với y là hàm số của x ).
Bảng a: khi giá trị của x tăng lên thì giá trị tương ứng của y giảm đi nên y là hàm số nghịch biến.
Bảng b: khi giá trị của x tăng lên thì giá trị tương ứng của y tăng lên vậy y là hàm số đồng biến.
Bảng c: khi giá trị của x tăng lên thì giá trị tương ứng của y không thay đổi vậy y là hàm số không đồng biến , không nghịch biến.
Hàm hằng không đồng biến, không nghịch biến
Bài tập 6:
1) Trong bảng các giá trị tương ứng của x và y bảng nào cho ta hàm số đồng biến? nghịch biến? (Với y là hàm số của x ).
Bảng a: khi giá trị của x tăng lên thì giá trị tương ứng của y giảm đi nên y là hàm số nghịch biến.
Bảng b: khi giá trị của x tăng lên thì giá trị tương ứng của y tăng lên vậy y là hàm số đồng biến.
2) Dựa vào kết quả phần 1), điền từ thích hợp vào chỗ trống:
Cho hàm số y = f(x) xác định với mọi x thuộc R.
Với x1, x2 bất kì thuộc R:
Nếu x1 < x2 mà f(x1) < f (x2) thì hàm số y = f( x) .................... trên R.
Nếu x1 < x2 mà f(x1) > f (x2) thì hàm số y = f( x) ......................trên R.
đồng biến
nghịch biến
Cho hàm số y = f(x) xác định với mọi x thuộc R.
Nếu x1 < x2 mà f(x1) < f (x2) thì hàm số y = f( x) .................... trên R.
Nếu x1 < x2 mà f(x1) > f (x2) thì hàm số y = f( x) ......................trên R.
đồng biến
nghịch biến
Với x1, x2 bất kì thuộc R:
3. Hàm số đồng biến, nghịch biến.
Tổng quát (sgk):
a / Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) cũng tăng lên thì hàm số y = f(x) được gọi là đồng biến trên R.
b / Nếu giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi thì hàm số y = f(x) được gọi là nghịch biến trên R.
Cho hàm số y = f(x) xác định với mọi x thuộc R.
3. Hàm số đồng biến, nghịch biến.
Với x1, x2 bất kì thuộc R:
Nếu x1 < x2 mà f(x1) < f (x2) thì hàm số y = f( x) .................... trên R.
Nếu x1 < x2 mà f(x1) > f (x2) thì hàm số y = f( x) ......................trên R.
đồng biến
nghịch biến
Nói cách khác:
1. Khái niệm hàm số.
Chương II- Hàm số bậc nhất
§1. Nh¾c l¹i vµ bæ sung c¸c kh¸i niÖm vÒ hµm sè
Tiết 19
2. Đồ thị hàm số.
3. Hàm số đồng biến, nghịch biến.
Cho hàm số y = f(x) xác định với mọi x thuộc R.
Nếu x1 < x2 mà f(x1) < f (x2) thì hàm số y = f( x) .................... trên R.
Nếu x1 < x2 mà f(x1) > f (x2) thì hàm số y = f( x) ......................trên R.
đồng biến
nghịch biến
Với x1, x2 bất kì thuộc R:
Bài tập 7: Chọn câu đúng nhất:
Cho hàm số y = f(x) = 3x. Ta có;
A. Hàm số y = f(x) = 3x đồng biến.
B. Hàm số y = f(x) = 3x nghịch biến.
C. Hàm số y = f(x) = 3x đồng biến trên R.
D. Hàm số y = f(x) = 3x nghịch biến trên R.
Bài 7: SGK tr 46.
Cho hàm số y = f(x) = 3x.
Cho x hai giá trị bất kì x1, x2 sao cho x1 < x2.
Hãy chứng minh f(x1) < f(x2) rối rút ra kết luận hàm số đã cho đồng biến trên R?
Hướng dẫn:
Ta có: f(x1) = 3x1; f(x2) = 3x2
Xét f(x2) - f(x1) = 3x2- 3x1 = 3( x2 - x1)
vì x1 < x2 nên x2 - x1 > 0
do đó f(x2) - f(x1) = 3( x2 - x1) > 0
Vậy f(x2) > f(x1)
Vì x1 < x2 mà f(x1) < f(x2) nên hàm số đồng biến.
Hàm số y = f(x) = 3x xác định với mọi x thuộc R
Hướng dẫn về nhà
- Bài 1, 2, 3, 4, 7 SGK tr 45 - 46;
- Bài tập bổ xung ( dành cho HS khá giỏi) Chứng minh với mọi x thuộc R, hàm số y = ax + b luôn đồng biến khi a > 0 và nghịch biến khi a < 0?

- Ôn tập các khái niệm đã học về hàm số, vận dụng vào làm các bài tập dưới đây:
468x90
 
Gửi ý kiến