Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Toán 11

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Nữ Mai Trang
Ngày gửi: 14h:48' 05-02-2026
Dung lượng: 9.1 MB
Số lượt tải: 0
Số lượt thích: 0 người
CHÀO MỪNG CÁC EM
ĐÃ ĐẾN VỚI TIẾT HỌC!

QUIZZTIME:
TRUY TÌM KIẾN THỨC

Câu 1: Dãy số nào sau đây khác với các dãy số còn lại?

A. 1; 3; 5; 7; 9

B. 1; 1; 1; 1;1

C. 3; 3; 3; 3; 3

D. 5; 5; 5; 5; 5

Câu 2: Cho dãy số 4, 7, 10, 13, … Số hạng thứ 10 của dãy
số đó là:

A. 30

B. 31

C. 32

D. 29

Câu 3: Dãy số nào dưới đây có quy luật cộng thêm cùng
một số mỗi lần?
A. 2, 4, 6, 8, 10

B. 1; 2; 4; 8; 10

C. 10; 9; 7; 4; 0

D. 3; 5; 9; 11; 14

Câu 4: Điền số phù hợp vào dãy số sau:
“5,…, 15, 20, 25, 30, 35”
A. 6

B. 14

C. 9

D. 10

Câu 5: Trong các dãy số sau, dãy nào có hiệu giữa hai số
liên tiếp là không đổi:
A. 1; 2; 4; 8; 16

B. 1; 4; 9; 16; 25

C. 3; 6; 9; 12; 15

D. 2; 3; 5; 8; 13

CHƯƠNG II. DÃY SỐ. CẤP SỐ CỘNG VÀ
CẤP SỐ NHÂN

BÀI 6: CẤP SỐ CỘNG

NỘI DUNG BÀI HỌC
1

Định nghĩa

2

Số hạng tổng quát

3

Tổng n số hạng đầu của một cấp số cộng

1. ĐỊNH NGHĨA

HĐ 1:
Cho dãy số  gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức biểu diễn số hạng  theo số hạng 

Trả lời:
a) Năm số hạng đầu của dãy số (un) là năm số tự nhiên lẻ đầu tiên và đó là:
1; 3; 5; 7; 9
b) Nhận thấy trong dãy số (un), số hạng sau hơn số hạng liền trước 2 đơn vị.
Do đó, ta dự đoán công thức biểu diễn số hạng un theo số hạng un – 1 là
un = un – 1 + 2

KẾT LUẬN
• Cấp số cộng là một dãy số (hữu hạn hay vô hạn), trong đó kể
từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng trước
nó cộng với một số không đổi d. Số d được gọi là công sai của
cấp số cộng.
• Cấp số cộng với công sai d được cho bởi hệ thức truy hồi:
với .

CÂU HỎI
Dãy số không đổi a, a, a, … Có phải là một cấp số cộng không?
Giải
Dãy số không đổi a, a, a, ... là một cấp số cộng với công sai
d = 0.
Đây là một dãy số hằng.

BÀI TẬP VẬN DỤNG
Một nhà hát có 25 hàng ghế với 16 ghế ở hàng thứ nhất, 18 ghế ở
hàng thứ hai, 20 ghế ở hàng thứ 3 và cứ tiếp tục theo quy luật đó,
tức là hàng sau nhiều hơn hàng liền trước nó 2 ghế. Em hãy cho
biết là số ghế ở hàng thứ 4 và thứ 5 là bao nhiêu dựa vào quy luật
mà bài toán đã cho?

LUYỆN TẬP 1
Cho dãy số  với . Chứng minh rằng  là một cấp số cộng. Xác định số
hạng đầu và công sai của cấp số cộng này.
Giải

Ta có:
Do đó , với mọi .
Vậy dãy số là cấp số cộng có số hạng đầu là và công sai .

2. SỐ HẠNG TỔNG QUÁT

HĐ 2:
Cho cấp số cộng  với số hạng đầu và công sai .
a) Tính các số hạng  theo  và .
b) Dự đoán công thức tính số hạng tổng quát  theo  và .
Trả lời:
a) Ta có: u2 = u1 + d;
u3 = u2 + d = (u1 + d) + d = u1 + 2d;
u4 = u3 + d = (u1 + 2d) + d = u1 + 3d;
u5 = u4 + d = (u1 + 3d) + d = u1 + 4d.

HĐ 2:
Cho cấp số cộng  với số hạng đầu và công sai .
a) Tính các số hạng  theo  và .
b) Dự đoán công thức tính số hạng tổng quát  theo  và .
Trả lời:
b) Từ câu a, ta dự đoán công thức tính số hạng tổng quát un 
theo u1 và d là:
un = u1 + (n – 1)d.

KẾT LUẬN

Nếu cấp số cộng có số hạng đầu và công sai d thì số hạng
tổng quát của nó được xác định theo công thức:
.

LUYỆN TẬP 2
Cho dãy số  với . Chứng minh rằng  là một cấp số cộng. Xác định số hạng
đầu  và công sai d của cấp số cộng này. Từ đó viết số hạng tổng quát  dưới
dạng 
Giải
Ta có: un – un – 1 = (4n – 3) – [4(n – 1) – 3]
= 4n – 3 – (4n – 4 – 3) = 4, với mọi n ≥ 2.
Do đó, dãy số (un) là một cấp số cộng với số hạng đầu u1 = 4 . 1 – 3 = 1 và
công sai d = 4.
Số hạng tổng quát là: u  = 1 + (n – 1) . 4

3. TỔNG n SỐ HẠNG ĐẦU CỦA MỘT
CẤP SỐ CỘNG

HĐ 3:
Cho cấp số cộng  với số hạng đầu  và công sai 
Để tính tổng của  số hạng đầu
                                      
Hãy lần lượt thực hiện các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng   theo số hạng đầu  và công sai .
b) Viết   theo thứ tự ngược lại:  và sử dụng kết quả ở phần a) để biểu diễn mỗi số
hạng trong tổng này theo   và 
c) Cộng từng vế hai đẳng thức nhận được ở a), b) để tính  theo   và .

Trả lời:
a) Ta có: u2 = u1 + d; ...;
un – 1 = u1 + (n – 1 – 1)d = u1 + (n – 2)d;
un = u1 + (n – 1)d.
Sn = u1 + u2 + ... + un – 1 + un
= u1 + (u1 + d) + ... + [u1 + (n – 2)d] + [u1 + (n – 1)d]
b) Sn = un + un – 1 + ... + u2 + u1
= [u1 + (n – 1)d] + [u1 + (n – 2)d] + ... + (u1 + d) + u1

Trả lời:
c) Ta có:
Sn + Sn = {u1 + (u1 + d) + ... + [u1 + (n – 2)d] + [u1 + (n – 1)d]} + {[u1 + (n – 1)d]
+ [u1 + (n – 2)d] + ... + (u1 + d) + u1}
⇔ 2Sn = {u1 + [u1 + (n – 1)d]} + {(u1 + d) + [u1 + (n – 2)d]} + ... + {[u1 + (n – 2)d]
+ (u1 + d)} + {[u1 + (n – 1)d] + u1}
⇔ 2Sn = [2u1 + (n – 1)d] + [2u1 + (n – 1)d] + ... + [2u1 + (n – 1)d] + [2u1 + (n –
1)d]
⇔ 2Sn = n . [2u1 + (n – 1)d]

KẾT LUẬN
Cho cấp số cộng với công sai d. Đặt . Khi đó

Chú ý:
Sử dụng công thức , ta có thể viết tổng dưới dạng:

Ví dụ 5:

Giải bài toán ở tình huống mở đầu.
Giải

Số ghế ở mỗi hàng của nhà hát lập thành một cấp số cộng, gồm 25 số
hạng, với số hạng đầu và công sai . Tổng các số hạng này là:
Vậy nhà hát đó có tổng cộng ghế.

VẬN DỤNG
Anh Nam được nhận vào làm việc ở một công ty về công nghệ với
mức lương khởi điểm là 100 triệu đồng một năm. Công ty sẽ tăng
thêm lương cho anh Nam mỗi năm là 20 triệu đồng. Tính tổng số tiền
lương mà anh Nam nhận được sau 10 năm làm việc cho công ty đó.

Giải
Số tiền lương anh Nam nhận được mỗi năm lập thành một cấp số
cộng, gồm 10 số hạng, với số hạng đầu u1 = 100 và công sai d = 20.
Tổng 10 số hạng đầu của cấp số cộng này là

Vậy số tiền lương mà anh Nam nhận được sau 10 năm làm việc ở
công ty này là 1 900 triệu đồng hay 1 tỷ 900 triệu đồng.

LUYỆN TẬP

BÀI TẬP TRẮC NGHIỆM

Câu 1. Cho một cấp số cộng có . Tìm d?

A. d = 5

C. d = 6

B. d = 7

D. d = 8

BÀI TẬP TRẮC NGHIỆM
Câu 4. Cho cấp số cộng có:  = -0,1; d = 0,1. Số hạng thứ 7 của
cấp số cộng này là:

A. 0,5

C. 1,6

B. 6

D. 0,6

BÀI TẬP TRẮC NGHIỆM
Câu 5. Cho tam giác ABC biết 3 góc của tam giác lập thành một
cấp số cộng và có một góc bằng 30o. Tìm 2 góc còn lại?

A. 65o ; 90o

C. 60o ; 95o

B. 75o ; 80o

D. 60o ; 90o

VẬN DỤNG

Bài 2.12 (SGK – tr51)
Giả sử một chiếc xe ô tô lúc mới mua là 680 triệu đồng. Cứ sau mỗi năm sử
dụng, giá của chiếc xe ô tô giảm 55 triệu đồng. Tính giá còn lại của chiếc xe
sau 5 năm sử dụng.
Giải
Giá của chiếc xe ô tô sau một năm sử dụng là 680 – 55 = 625 (triệu đồng)
Giá của chiếc xe ô tô sau mỗi năm sử dụng lập thành một cấp số cộng với
số hạng đầu là u1 = 625 và công sai d = – 55 (do giá xe giảm).
Do đó, giá của chiếc ô tô sau 5 năm sử dụng là
u5 = u1 + (5 – 1)d = 625 + 4 . (– 55) = – 405 (triệu đồng).

Bài 2.13 (SGK – tr51)
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất,
18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế
ở hàng sau nhiều hơn 3 ghế so với số ghế ở hàng liền trước nó). Nếu muốn
hội trường đó có sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư đó phải thiết
kế tối thiểu bao nhiêu hàng ghế?

Giải
Số ghế ở mỗi hàng của hội trường lập thành một cấp số cộng với số hạng
đầu u1 = 15 và công sai d = 3. Giả sử cần thiết kế tối thiếu n hàng ghế để
hội trường có sức chứa ít nhất 870 ghế ngồi.
Ta có: 
Do đó,

Vậy cần thiết kế tối thiểu 20 hàng ghế để thỏa mãn yêu cầu bài toán.

Bài 2.14 (SGK – tr51)
Vào năm 2020, dân số của một thành phố là khoảng 1,2 triệu người. Giả
sử mỗi năm, dân số của thành phố này tăng thêm khoảng 30 nghìn
người. Hãy ước tính dân số của thành phố này vào năm 2030.

Giải
Ta có: 1,2 triệu người = 1 200 nghìn người.
Dân số mỗi năm của thành phố từ năm 2020 đến năm 2030 lập thành
một cấp số cộng, gồm 11 số hạng (2030 – 2020 + 1 = 11), với số hạng
đầu u1 = 1 200 và công sai d = 30.
Ta có: u11 = u1 + (11 – 1)d = 1 200 + 10 . 30 = 1 500.
Vậy dân số của thành phố này vào năm 2030 khoảng 1 500 nghìn
người hay 1,5 triệu người.

HƯỚNG DẪN VỀ NHÀ

Ôn tập kiến thức

Hoàn thành bài tập

Đọc trước bài sau

đã học

trong SBT

Bài 7: Cấp số nhân

CẢM ƠN CÁC EM
ĐÃ LẮNG NGHE BÀI HỌC!
468x90
 
Gửi ý kiến