Tìm kiếm Bài giảng
Chương I. §7. Định lí

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Hàng Văn Phú
Ngày gửi: 04h:33' 30-09-2023
Dung lượng: 3.8 MB
Số lượt tải: 119
Nguồn:
Người gửi: Hàng Văn Phú
Ngày gửi: 04h:33' 30-09-2023
Dung lượng: 3.8 MB
Số lượt tải: 119
Số lượt thích:
0 người
CHÀO MỪNG CÁC EM
ĐẾN VỚI BÀI HỌC MỚI!
Trong Bài 10, ta dùng cách đo đạc để kiểm nghiệm tính chất sau:
“Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc đồng
vị bằng nhau”.
Tuy nhiên, đo đạc chỉ cho kết quả gần đúng và trong trường hợp cụ thể.
Vậy có cách nào khác để chắc chắn tính chất
đúng cho mọi trường hợp không?
BÀI 11: ĐỊNH LÍ VÀ CHỨNG MINH
ĐỊNH LÍ (1 Tiết)
Định lí. Giả thiết và kết luận của định lí
Ví dụ
“Nếu hai góc đối đỉnh thì bằng nhau”, được suy ra
từ một điều đúng đã biết là “hai góc kề bù có tổng
Đó là một định lí
số đo bằng 180”.
Nếu hai góc đối đỉnh thì bằng nhau
Giả thiết
Kết luận
KẾT LUẬN
Định lí là một khẳng định được suy ra từ những khẳng định
đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:
Nếu .... thì .....
• Phần giữa từ “nếu ” và từ “thì” là giả thiết của định lí.
• Phần sau từ “thì” là kết luận của định lí.
Ví dụ
Giả thiết là “một đường thẳng
vuông góc với một trong hai
Trong định lí “Một đường
đường thẳng song song”;
thẳng vuông góc với một trong
Kết luận là “nó cũng vuông góc
hai đường thẳng song song thì
với đường thẳng còn lại”.
nó cũng vuông góc với đường
thẳng còn lại” thì có:
Ta có thể viết giả thiết, kết luận trên
bằng kí hiệu như sau:
Luyện tập 1
Vẽ hình và viết giả thiết,
kết luận của định lí:
“Hai góc đối đỉnh thì
bằng nhau”
Giả thiết: hai góc đối đỉnh.
Kết luận: bằng nhau.
GT
KL
đối đỉnh
Thế nào là chứng minh định lí?
Chứng minh một định lí là dùng lập luận để từ giả thiết và
những khẳng định đúng đã biết suy ra kết luận của định lí.
GT
KL
a // b, c cắt a tại A, c cắt b tại B;
, là hai góc đồng vị.
=.
Em hãy nêu giả thiết, kết luận của bài toán.
Chứng minh
Qua điểm B kẻ đường thẳng b' sao cho = . Khi
đó đường thẳng c tạo với hai đường thẳng a và
b' hai góc đồng vị bằng nhau = .
Theo dấu hiệu nhận biết hai đường thẳng song
song, ta có a và b' song song với nhau. Suy ra
qua B có hai đường thẳng b, b' cùng song song
với a. Theo tiên đề Euclid, b' trùng với b. Từ đó
suy ra = (vì cùng bằng ).
Luyện tập 2
GT
Em hãy chứng minh
là hai góc kề bù, .
KL
định lí: “Hai góc kề bù
bằng nhau thì mỗi góc là
một góc vuông”.
Giải
Ta có: (hai góc kề bù)
Mà
.
Tranh luận
Hai góc đối đỉnh thì chắc chắn bằng nhau rồi.
Liệu hai góc bằng nhau thì có đối đỉnh không nhỉ?
Tớ nghĩ đó là điều không đúng! Nhưng làm thế
nào để khẳng định điều đó không đúng nhỉ?
Hai góc bằng nhau chưa chắc đã đối đỉnh.
Ví dụ: Hai góc vuông mà kề bù bằng nhau
và đều bằng nhưng không đối đỉnh.
LUYỆN TẬP
Bài 3.24 (SGK - tr57)
Có thể coi định lí: “Hai đường thẳng cùng vuông góc với
một đường thẳng thứ ba thì chúng song song với nhau”
được suy ra trực tiếp từ định lí về dấu hiệu nhận biết hai
đường thẳng song song không? Suy ra như thế nào?
Giải
Nếu d' và d'' phân biệt, cùng vuông góc với d thì d
cắt d', d'' tạo thành 8 góc vuông. Do hai góc vuông
nào cũng bằng nhau nên theo dấu hiệu góc đồng vị
bằng nhau thì hai đường thẳng d' và d'' song song.
Bài 3.25 (SGK - tr57)
Hãy chứng minh định lí nói ở Ví dụ trang 56: “Một đường
thẳng vuông góc với một trong hai đường thẳng song song
thì nó cũng vuông góc với đường thẳng còn lại”. Trong
chứng minh đó, ta đã sử dụng những điều đúng đã biết nào?
Giải
• Nếu d không cắt d'' thì d song song với d'' nên qua giao điểm
A của d và d' có hai đường thẳng là d và d' cùng song song
với d''. Theo tiên đề Euclid, d phải trùng với d', trong khi theo
giả thiết thì d khác d' vì vuông góc với d'.
Vậy d phải cắt d'' tại một điểm B.
Giải
• d cắt d', d'' tạo thành 8 góc, trong đó 4 góc tại A đều vuông.
Từ tính chất của hai đường thẳng song song khi d cắt hai
đường thẳng song song d', d'' thì hai góc đồng vị bằng
nhau nên trong bốn góc còn lại tại B có một góc vuông.
Vậy d vuông góc với d''.
Bài 3.26 (SGK - tr57)
Cho góc xOy không phải là góc bẹt. Khẳng định nào sau đây là đúng?
(1) Nếu Ot là tia phân giác của góc xOy thì = .
(2) Nếu tia Ot thỏa mãn = thì Ot là tia phân giác của góc xOy.
Nếu có khẳng định không đúng, hãy nêu ví dụ cho thấy khẳng định đó
không đúng.
(Gợi ý: Xét tia đối của một tia phân giác)
Giải
(1) đúng vì điều đó nằm trong tính chất của tia phân giác.
(2) không đúng vì nếu lấy tia đối Ot' của tia phân giác Ot
của góc xOy thì do kề bù với kề bù với , ta có , nhưng
Ot' không là tia phân giác của góc xOy.
Câu 1:
A.
Cho định lí: “Nếu một đường
thẳng vuông góc với một
trong hai đường thẳng song
B.
song thì nó vuông góc với
đường thẳng kia”.
C.
GT
KL
a // c,
GT
, a // b
KL
a // c
GT
a // b,
KL
D.
GT
;
KL
a // b
Câu 2: Nối mỗi dòng ở cột bên trái với một dòng ở cột
bên phải để được khẳng định đúng.
A. Nếu một đường thẳng cắt 2
1. thì
đường thẳng song song
B. Nếu tia Ot là tia phân giác của
2. thì chúng là hai tia trùng nhau
góc xOy
C. Nếu Oa, Ob là hai tia phân giác
3. thì các cặp góc so le trong
của hai góc đối đỉnh
bằng nhau
4. thì chúng là hai tia đối nhau.
Câu 3: Điền dấu X vào ô thích hợp
Câu
A. Hai góc đối đỉnh thì bằng nhau.
Đúng
x
Sai
B. Hai góc bằng nhau thì đổi đỉnh.
C. Nếu là trung điểm của đoạn thẳng thì
D. Nếu thì là trung điểm của
x
x
x
HƯỚNG DẪN VỀ NHÀ
1
2
3
Ghi nhớ các
Hoàn thành bài tập
Chuẩn bị bài
kiến thức đã học
trong SBT
“Luyện tập chung”
CẢM ƠN CÁC EM
ĐÃ LẮNG NGHE BÀI GIẢNG!
ĐẾN VỚI BÀI HỌC MỚI!
Trong Bài 10, ta dùng cách đo đạc để kiểm nghiệm tính chất sau:
“Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc đồng
vị bằng nhau”.
Tuy nhiên, đo đạc chỉ cho kết quả gần đúng và trong trường hợp cụ thể.
Vậy có cách nào khác để chắc chắn tính chất
đúng cho mọi trường hợp không?
BÀI 11: ĐỊNH LÍ VÀ CHỨNG MINH
ĐỊNH LÍ (1 Tiết)
Định lí. Giả thiết và kết luận của định lí
Ví dụ
“Nếu hai góc đối đỉnh thì bằng nhau”, được suy ra
từ một điều đúng đã biết là “hai góc kề bù có tổng
Đó là một định lí
số đo bằng 180”.
Nếu hai góc đối đỉnh thì bằng nhau
Giả thiết
Kết luận
KẾT LUẬN
Định lí là một khẳng định được suy ra từ những khẳng định
đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:
Nếu .... thì .....
• Phần giữa từ “nếu ” và từ “thì” là giả thiết của định lí.
• Phần sau từ “thì” là kết luận của định lí.
Ví dụ
Giả thiết là “một đường thẳng
vuông góc với một trong hai
Trong định lí “Một đường
đường thẳng song song”;
thẳng vuông góc với một trong
Kết luận là “nó cũng vuông góc
hai đường thẳng song song thì
với đường thẳng còn lại”.
nó cũng vuông góc với đường
thẳng còn lại” thì có:
Ta có thể viết giả thiết, kết luận trên
bằng kí hiệu như sau:
Luyện tập 1
Vẽ hình và viết giả thiết,
kết luận của định lí:
“Hai góc đối đỉnh thì
bằng nhau”
Giả thiết: hai góc đối đỉnh.
Kết luận: bằng nhau.
GT
KL
đối đỉnh
Thế nào là chứng minh định lí?
Chứng minh một định lí là dùng lập luận để từ giả thiết và
những khẳng định đúng đã biết suy ra kết luận của định lí.
GT
KL
a // b, c cắt a tại A, c cắt b tại B;
, là hai góc đồng vị.
=.
Em hãy nêu giả thiết, kết luận của bài toán.
Chứng minh
Qua điểm B kẻ đường thẳng b' sao cho = . Khi
đó đường thẳng c tạo với hai đường thẳng a và
b' hai góc đồng vị bằng nhau = .
Theo dấu hiệu nhận biết hai đường thẳng song
song, ta có a và b' song song với nhau. Suy ra
qua B có hai đường thẳng b, b' cùng song song
với a. Theo tiên đề Euclid, b' trùng với b. Từ đó
suy ra = (vì cùng bằng ).
Luyện tập 2
GT
Em hãy chứng minh
là hai góc kề bù, .
KL
định lí: “Hai góc kề bù
bằng nhau thì mỗi góc là
một góc vuông”.
Giải
Ta có: (hai góc kề bù)
Mà
.
Tranh luận
Hai góc đối đỉnh thì chắc chắn bằng nhau rồi.
Liệu hai góc bằng nhau thì có đối đỉnh không nhỉ?
Tớ nghĩ đó là điều không đúng! Nhưng làm thế
nào để khẳng định điều đó không đúng nhỉ?
Hai góc bằng nhau chưa chắc đã đối đỉnh.
Ví dụ: Hai góc vuông mà kề bù bằng nhau
và đều bằng nhưng không đối đỉnh.
LUYỆN TẬP
Bài 3.24 (SGK - tr57)
Có thể coi định lí: “Hai đường thẳng cùng vuông góc với
một đường thẳng thứ ba thì chúng song song với nhau”
được suy ra trực tiếp từ định lí về dấu hiệu nhận biết hai
đường thẳng song song không? Suy ra như thế nào?
Giải
Nếu d' và d'' phân biệt, cùng vuông góc với d thì d
cắt d', d'' tạo thành 8 góc vuông. Do hai góc vuông
nào cũng bằng nhau nên theo dấu hiệu góc đồng vị
bằng nhau thì hai đường thẳng d' và d'' song song.
Bài 3.25 (SGK - tr57)
Hãy chứng minh định lí nói ở Ví dụ trang 56: “Một đường
thẳng vuông góc với một trong hai đường thẳng song song
thì nó cũng vuông góc với đường thẳng còn lại”. Trong
chứng minh đó, ta đã sử dụng những điều đúng đã biết nào?
Giải
• Nếu d không cắt d'' thì d song song với d'' nên qua giao điểm
A của d và d' có hai đường thẳng là d và d' cùng song song
với d''. Theo tiên đề Euclid, d phải trùng với d', trong khi theo
giả thiết thì d khác d' vì vuông góc với d'.
Vậy d phải cắt d'' tại một điểm B.
Giải
• d cắt d', d'' tạo thành 8 góc, trong đó 4 góc tại A đều vuông.
Từ tính chất của hai đường thẳng song song khi d cắt hai
đường thẳng song song d', d'' thì hai góc đồng vị bằng
nhau nên trong bốn góc còn lại tại B có một góc vuông.
Vậy d vuông góc với d''.
Bài 3.26 (SGK - tr57)
Cho góc xOy không phải là góc bẹt. Khẳng định nào sau đây là đúng?
(1) Nếu Ot là tia phân giác của góc xOy thì = .
(2) Nếu tia Ot thỏa mãn = thì Ot là tia phân giác của góc xOy.
Nếu có khẳng định không đúng, hãy nêu ví dụ cho thấy khẳng định đó
không đúng.
(Gợi ý: Xét tia đối của một tia phân giác)
Giải
(1) đúng vì điều đó nằm trong tính chất của tia phân giác.
(2) không đúng vì nếu lấy tia đối Ot' của tia phân giác Ot
của góc xOy thì do kề bù với kề bù với , ta có , nhưng
Ot' không là tia phân giác của góc xOy.
Câu 1:
A.
Cho định lí: “Nếu một đường
thẳng vuông góc với một
trong hai đường thẳng song
B.
song thì nó vuông góc với
đường thẳng kia”.
C.
GT
KL
a // c,
GT
, a // b
KL
a // c
GT
a // b,
KL
D.
GT
;
KL
a // b
Câu 2: Nối mỗi dòng ở cột bên trái với một dòng ở cột
bên phải để được khẳng định đúng.
A. Nếu một đường thẳng cắt 2
1. thì
đường thẳng song song
B. Nếu tia Ot là tia phân giác của
2. thì chúng là hai tia trùng nhau
góc xOy
C. Nếu Oa, Ob là hai tia phân giác
3. thì các cặp góc so le trong
của hai góc đối đỉnh
bằng nhau
4. thì chúng là hai tia đối nhau.
Câu 3: Điền dấu X vào ô thích hợp
Câu
A. Hai góc đối đỉnh thì bằng nhau.
Đúng
x
Sai
B. Hai góc bằng nhau thì đổi đỉnh.
C. Nếu là trung điểm của đoạn thẳng thì
D. Nếu thì là trung điểm của
x
x
x
HƯỚNG DẪN VỀ NHÀ
1
2
3
Ghi nhớ các
Hoàn thành bài tập
Chuẩn bị bài
kiến thức đã học
trong SBT
“Luyện tập chung”
CẢM ƠN CÁC EM
ĐÃ LẮNG NGHE BÀI GIẢNG!
 








Các ý kiến mới nhất