Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương V. §5. Đạo hàm cấp hai

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Công Lập
Ngày gửi: 07h:37' 10-04-2024
Dung lượng: 480.3 KB
Số lượt tải: 52
Số lượt thích: 0 người
BÀI 3. ĐẠO HÀM CẤP HAI

Khi tham gia giao thông một ô tô
đang chạy với vận tốc 54 km/h.(Hình
6) thì tài xế nhìn thấy một vật cản
phía trước. Để tránh va chạm vật cản,
người tài xế hãm phanh, ô tô giảm
vận tốc cho đến khi dừng hẳn.

Đại lượng đặc trưng cho sự
giảm vận tốc thể hiện kiến
thức gì trong toán học?

I. yĐỊNH
NGHĨA

3
2
y

x

4
x
5
• HĐ1: Xét hàm số
• a) Tìm y .
• b) Tìm đạo hàm của hàm số y .

Giải
3

a)

y ' 4 x  8 x

b)

 y '' 12 x

2

8

.

Định nghĩa
• Giả sử hàm số y  f  x  có đạo hàm y '  f '  x 
x  a ; b 
y '  f 'x 
tại mọi điểm
x. Nếu hàm số
y'
tiếpxtục có đạo hàm tại thì ta gọi đạo
hàm
y
f  xcủa

tại x là đạo hàm cấp hai của hàm số
tại
y ''
f ''  x 
Kí hiệu:
hoặc
.

Ví dụ 1. Cho hàm số
.
4
2
f  x hàm
x số
 4tạix điểm
 3 bất kì.
a) Tìm đạo hàm cấp hai của
b) Tính đạo hàm cấp hai của hàm số tại điểm
.
x0  1
Ví dụ 2.

Cho hàm số

1
f x  
x2
a) Tìm đạo hàm cấp hai của hàm số tại điểm
.
x  2
b) Tính đạo hàm cấp hai của hàm số tại
x0 2
điểm
.

Giải
• Ví dụ 1
a) f '  x  4 x 3  8 x.
f ''  x  12 x  8.

• Ví dụ 2
a) f '  x  

2

b)

f ''  x  12 x 2  8

 f ''  1 12. 1  8 4.
2

1

x  2

f ''  x  
b) f ''  x  

.

2

2

x  2

3

2

x  2

 f '' 2  

3

.

.

2

2  2 

3

1
 .
32

HĐ2: Một vật rơi tự do theo phương thẳng đứng có
1 2
phương trình chuyển động s  gt , trong đó g là gia tốc
2
rơi tự do, g 9,8 m / s 2 .
a) Tính vận tốc tức thời tại thời điểm t0 4 s ; t1 4,1s .
v
b) Tính tỉ số
trong khoảng thời gian  t t1  t0 .
t

Giải
a, Vận tốc là đạo hàm cấp 1 của độ dời theo thời
gian.
v(t ) s '(t ) gt 9,8t

• Tính v(t0 ), v(t1 ) .

v(t0 ) 9,8.4 39,2 m / s ; v(t1 ) 9,8.4,1 40,18 m / s 

b,

v v (t1 )  v(t0 )

v 40,18  39,2


9,8 (m / s 2 )
t
4,1  4

II. Ý NGHĨA CƠ HỌC CỦA ĐẠO HÀM
Đạo hàm cấp hai s '' t  là gia tốc tức thời của
chuyển động s s t  tại thời điểm t .







Ví dụ 3. Xét dao động điều hòa có phương trình chuyển động
A
,

,

s t , A
cos

t


trong đó
là các hằng số. Tìm gia tốc tức thời
t
tại thời điểm của chuyển động đó

Giải
là vận tốc tức thời tại thời điểm t , ta

Gọi v t 
có:
v t  s ' t   A cos t    '  A sin t   .
Gia tốc tức thời tại thời điểm t là:
a t  s '' t    A sin t    '
 A sin t     A 2co s t   .

LUYỆN TẬP

HƯỚNG DẪN HỌC BÀI Ở NHÀ
Ghi nhớ kiến thức trong bài.
Hoàn thành các bài tập trong SBT, về làm bài 5 SGK tr 75.
Chuẩn bị bài mới: "Bài tập cuối chương VII".
 
468x90
 
Gửi ý kiến