Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương I. §7. Định lí

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thị Hằng (trang riêng)
Ngày gửi: 23h:56' 18-10-2021
Dung lượng: 1.1 MB
Số lượt tải: 234
Số lượt thích: 0 người
1. học kĩ phần lý thuyết cô vừa dạy
2. Phát biểu các tính chất đã học dưới dạng định lý
3. vẽ hình minh họa và viết gt, kl các định lý
Hình học lớp 7
Giáo viên Nguyễn Thị Hằng
Khởi động
Phát biểu tính chất của hai góc đối đỉnh, vẽ hình minh họa.
*Tính chất của hai góc đối đỉnh :
Hai góc đối đỉnh thì bằng nhau
Ô1+Ô2 = 1800 (kề bù)
Ô2+Ô3 = 1800 (kề bù)
=>Ô1+ Ô2 = Ô2+Ô3 (= 1800 )
=>Ô1= Ô3
Tập suy luận ¤1= ¤3
O
3
1
2
Hai góc đối đỉnh thì bằng nhau
x
x’
y
y’
4
Tính chất: hai góc đối đỉnh thì bằng nhau được khẳng định là đúng thông qua suy luận người ta gọi là định lí
Tính chất hai góc đối đỉnh
1
2
3
1. Định lí
Định nghĩa: Định lí là một khẳng định suy ra từ những khẳng định được coi là đúng.
Tiết 11: ĐỊNH LÍ
Trong các mệnh đề sau mệnh đề nào là định lí:
Hai đường thẳng song song là hai đường thẳng không có điểm chung nào.
Trong ba điểm thẳng hàng có một và chỉ một điểm nằm giữa hai điểm còn lại.
Hai góc bằng nhau thì đối đỉnh.
Hai góc đối đỉnh thì bằng nhau.
Định lí 3
Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.
Định lý 1
Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.
Định lý 2
Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
Tiết 11: D?nh lớ
Ba định lí trên
có gì giống nhau ?
Định lí gồm mấy phần?
Gồm những phần nào?
b) C?u T?o: D?nh lớ g?m hai ph?n:
Giả thiết ( GT):
Kết luận (KL):
Là những điều cần suy ra.
là những điều đã cho.
Tiết 11: ĐỊNH LÍ
1. Định lí
a) Định nghĩa: Định lí là một khẳng định suy ra từ những khẳng định được coi là đúng.


 Khi định lí phát biểu dưới dạng “Nếu …thì….”, phần giả thiết nằm giữa từ nếu và từ thì, phần kết luận nằm sau từ thì
1. Định lí:
Nếu ............... …… thì ......................
Giả thiết (GT)
Kết luận (KL)
Giả thiết (GT)
Kết luận (KL)
Khi định lí phát biểu dưới dạng “Nếu …thì….”, và được phát biểu qua sơ đồ sau:
Tiết 11: ĐỊNH LÍ
b)Vẽ hình minh hoạ định lí trên, hãy viết giả thiết kết luận bằng ký hiệu.
Tiết 12: D?nh lớ
Tiết 12: D?nh lớ
Tiết 11: D?nh lớ
1. Định lí : (sgk,)
Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau.
Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba

a) GT:
KL:
chúng song song với nhau
Định lí
Giả thiết ( GT):
Kết luận (KL)
Tiết 13: D?nh lớ
1. D?nh lớ: (sgk,)
Là những điều cần suy ra.
là những điều đã cho.
Định lí phát biểu dưới dạng “Nếu … thì ….”,
GT
KL
Định lí là một khẳng định suy ra từ những khẳng định được coi là đúng.
Khởi động
Phát biểu tính chất của hai góc đối đỉnh, vẽ hình minh họa.
*Tính chất của hai góc đối đỉnh :
Hai góc đối đỉnh thì bằng nhau
Ô1+Ô2 = 1800 (kề bù)
Ô2+Ô3 = 1800 (kề bù)
=>Ô1+ Ô2 = Ô2+Ô3 (= 1800 )
=>Ô1= Ô3
Tập suy luận ¤1= ¤3
Chứng minh:
(1)
(2)
Từ (1) và (2)
Từ 3 trừ hai vế cho Ô2
(3)
(đpcm)
Tiết 11: D?nh lớ
1. D?nh lớ: (sgk,)
2. Chứng minh định lí
Ch?ng minh d?nh lý l dựng l?p lu?n d? t? gi? thi?t suy ra k?t lu?n.
Ô1v Ô3 d?i d?nh
Mà:
Định lí
2. Chứng minh định lí
Ch?ng minh d?nh lý l dựng l?p lu?n d? t? gi? thi?t suy ra k?t lu?n.
Vớ d? 1: Gúc t?o b?i hai tia phõn giỏc c?a hai gúc k? bự l m?t gúc vuụng
Ti?t 11: D?nh lớ
1. Định lí: (sgk,)
xOz và zOy k? bự
Om l tia phõn giỏc c?a xOz
On l tia phõn giỏc c?a zOy
mOn =90
0
GT
KL
x
y
z
m
n
O

xOz và zOy kề bù
Om là tia phân giác của xOz
On là tia phân giác của zOy
mOn =90
0
GT
KL
Chứng minh
mOz = xOz (1) (vì Om là tia phân giác của xOz)
zOn = zOy (2) (vì On là tia phân giác của zOy)
Từ (1) và (2) ta có :
mOz + zOn = (xOz + zOy) (3)
Vì tia Oz nằm giữa hai tia Om , On và vì xOz ; zOy kề bù ( theo GT) nên từ (3) ta có: mOn = .1800
hay mOn = 900
x
y
z
m
n
O
Muốn chứng minh một định lí ta cần thực hiện các bước:
Bước 1: Vẽ hình minh họa định lí.
Bước 2: Dựa theo hình vẽ viết giải thiết, kết luận bằng kí hiệu.
Bước 3: Từ giả thiết ta đưa ra các khẳng định và nêu kèm các căn cứ của nó cho đến kết luận.
Ti?t 11: D?nh Lớ
1. Định lí: (sgk,)
2. Chứng minh định lí:
Ch?ng minh d?nh lý l dựng l?p lu?n d? t? gi? thi?t suy ra k?t lu?n.
Những nội dung cần nắm
1.Định lí
2.Chứng minh định lí
Là khẳng định được suy ra từ những khẳng định được cho là đúng
Cấu trúc của định lí
KL
- Vẽ hình.
Viết GT, KL bằng kí hiệu.
Dùng lập luận để từ GT suy ra KL
GT
Tiết 11: ĐỊNH LÍ
Bài tập 49/trang101
Hãy chỉ ra giả thiết và kết luận của các định lí sau:
Nếu một đường thẳng cắt hai đường thẳng sao cho có một cặp góc so le trong bằng nhau thì hai đường thẳng đó song song.
Luyện tập + vận dụng
b) Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc so le trong bằng nhau.
hai đường thẳng đó song song.
Hướng dẫn học ở nhà
Học sinh học nội dung bài học theo hướng dẫn bằng sơ đồ tư duy
BTVN: 50, 51, 52 (sgk,101)
468x90
 
Gửi ý kiến