Tìm kiếm Bài giảng
Ôn tập: Tính chất cơ bản của phân số

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Chu Minh Thu
Ngày gửi: 23h:18' 14-08-2021
Dung lượng: 883.5 KB
Số lượt tải: 261
Nguồn:
Người gửi: Chu Minh Thu
Ngày gửi: 23h:18' 14-08-2021
Dung lượng: 883.5 KB
Số lượt tải: 261
Số lượt thích:
0 người
ÔN TẬP:
TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ.
Toán
TRƯỜNG TH&THCS CAM THỦY
Thứ ba ngày 8 tháng 9 năm 2020
Toán
Khởi động
Nêu 1 số tự nhiên dưới dạng phân số có mẫu số là 1
1. Tính chất cơ bản của phân số:
Ví dụ 1:
* Nếu nhân cả tử số và mẫu số của một phân số với một số tự nhiên khác 0 thì được một phân số bằng phân số đã cho.
Ví dụ 2:
* Nếu chia cả tử số và mẫu số của một phân số với một số tự nhiên khác 0 thì được một phân số bằng phân số đã cho.
Toán
Ôn tập: Tính chất cơ bản của phân số.
Thứ ba ngày 8 tháng 9 năm 2020
2. Vận dụng tính chất cơ bản của phân số:
* Ví dụ:
=
90 : 10
120 : 10
=
a. Rút gọn phân số:
=
=
9 : 3
12 : 3
=
=
90 : 30
120 : 30
,….
Hoặc:
Toán
Tính chất cơ bản của phân số.
Thứ ba ngày 8 tháng 9 năm 2020
Toán
Tính chất cơ bản của phân số.
2. Vận dụng tính chất cơ bản của phân số:
b. Quy đồng mẫu số các phân số:
Ví dụ 1: Quy đồng mẫu số của
và
Ta có:
và
Vậy:
và
Thứ ba ngày 8 tháng 9 năm 2020
;
Ví dụ 2: Quy đồng mẫu số của
và
Nhận xét:
10 : 5 = 2, chọn 10 làm mẫu số chung ta có:
giữ nguyên
Toán
Tính chất cơ bản của phân số.
2. Vận dụng tính chất cơ bản của phân số:
b. Quy đồng mẫu số các phân số:
Ta có:
Thứ ba ngày 8 tháng 9 năm 2020
3. Luyện tập:
Bài 1: Rút gọn các phân số
;
;
=
=
=
=
=
=
15:5
25:5
18:9
27:9
36:4
64:4
Bài giải
Toán
Tính chất cơ bản của phân số.
Thứ ba ngày 8 tháng 9 năm 2020
Bài 2: Quy đồng mẫu số các phân số
và
.
=
=
=
=
=
=
2x8
3x8
5x3
8x3
1x3
4x3
và
c)
và
b)
a)
;
;
giữ nguyên
=
=
5x4
6x4
=
=
3x3
8x3
Ta có
a)
và
và
b)
c)
và
Bài 3: Tìm các phân số bằng nhau trong các phân số dưới đây:
=
;
=
=
=
;
;
;
;
Ta có
và
CHÀO CÁC EM !
Dấu hiệu chia hết cho 4
* có 2 trường hợp:
- Khi số đó có 3 chữ số trở lên: thì DHCH cho 4 là: có 2 chữ số 0 tận cùng, hoặc tổng 2 số cuối cùng chia hết cho 4
ví dụ : 2331
- Khi số đó chỉ có 2 chữ số : thì DHCH cho 4 , ta sẽ nhẩm bằng cách
Ví dụ: 64 -> 6x2+4= 16 vì 16 Chia hết cho 4, nên 64 chia hết cho 4
36 -> 3x2+6= 12 , vì 12……………….., nên…
92
( ta lấy chữ số hàng chục x 2 + chữ số hàng đơn vị, kết quả chia hết cho 4, thì số ban đầu sẽ chia hết cho 4)
TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ.
Toán
TRƯỜNG TH&THCS CAM THỦY
Thứ ba ngày 8 tháng 9 năm 2020
Toán
Khởi động
Nêu 1 số tự nhiên dưới dạng phân số có mẫu số là 1
1. Tính chất cơ bản của phân số:
Ví dụ 1:
* Nếu nhân cả tử số và mẫu số của một phân số với một số tự nhiên khác 0 thì được một phân số bằng phân số đã cho.
Ví dụ 2:
* Nếu chia cả tử số và mẫu số của một phân số với một số tự nhiên khác 0 thì được một phân số bằng phân số đã cho.
Toán
Ôn tập: Tính chất cơ bản của phân số.
Thứ ba ngày 8 tháng 9 năm 2020
2. Vận dụng tính chất cơ bản của phân số:
* Ví dụ:
=
90 : 10
120 : 10
=
a. Rút gọn phân số:
=
=
9 : 3
12 : 3
=
=
90 : 30
120 : 30
,….
Hoặc:
Toán
Tính chất cơ bản của phân số.
Thứ ba ngày 8 tháng 9 năm 2020
Toán
Tính chất cơ bản của phân số.
2. Vận dụng tính chất cơ bản của phân số:
b. Quy đồng mẫu số các phân số:
Ví dụ 1: Quy đồng mẫu số của
và
Ta có:
và
Vậy:
và
Thứ ba ngày 8 tháng 9 năm 2020
;
Ví dụ 2: Quy đồng mẫu số của
và
Nhận xét:
10 : 5 = 2, chọn 10 làm mẫu số chung ta có:
giữ nguyên
Toán
Tính chất cơ bản của phân số.
2. Vận dụng tính chất cơ bản của phân số:
b. Quy đồng mẫu số các phân số:
Ta có:
Thứ ba ngày 8 tháng 9 năm 2020
3. Luyện tập:
Bài 1: Rút gọn các phân số
;
;
=
=
=
=
=
=
15:5
25:5
18:9
27:9
36:4
64:4
Bài giải
Toán
Tính chất cơ bản của phân số.
Thứ ba ngày 8 tháng 9 năm 2020
Bài 2: Quy đồng mẫu số các phân số
và
.
=
=
=
=
=
=
2x8
3x8
5x3
8x3
1x3
4x3
và
c)
và
b)
a)
;
;
giữ nguyên
=
=
5x4
6x4
=
=
3x3
8x3
Ta có
a)
và
và
b)
c)
và
Bài 3: Tìm các phân số bằng nhau trong các phân số dưới đây:
=
;
=
=
=
;
;
;
;
Ta có
và
CHÀO CÁC EM !
Dấu hiệu chia hết cho 4
* có 2 trường hợp:
- Khi số đó có 3 chữ số trở lên: thì DHCH cho 4 là: có 2 chữ số 0 tận cùng, hoặc tổng 2 số cuối cùng chia hết cho 4
ví dụ : 2331
- Khi số đó chỉ có 2 chữ số : thì DHCH cho 4 , ta sẽ nhẩm bằng cách
Ví dụ: 64 -> 6x2+4= 16 vì 16 Chia hết cho 4, nên 64 chia hết cho 4
36 -> 3x2+6= 12 , vì 12……………….., nên…
92
( ta lấy chữ số hàng chục x 2 + chữ số hàng đơn vị, kết quả chia hết cho 4, thì số ban đầu sẽ chia hết cho 4)
 
Các ý kiến mới nhất