Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương V. §3. Số trung bình cộng. Số trung vị. Mốt

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Trần Phước Vinh (trang riêng)
Ngày gửi: 06h:13' 20-03-2010
Dung lượng: 522.5 KB
Số lượt tải: 252
Số lượt thích: 0 người
Slide 1
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
CHƯƠNG V: THỐNG KÊ
SỐ TRUNG BÌNH CỘNG.
SỐ TTRUNG VỊ. MỐT
§3

Slide 2
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
SỐ TRUNG BÌNH CỘNG. SỐ TRUNG VỊ. MỐT
III. MỐT
§3
SỐ TRUNG BÌNH CỘNG (HAY SỐ TRUNG BÌNH)
II. SỐ TRUNG VỊ
NỘI DUNG
Slide 3
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
I- SỐ TRUNG BÌNH CỘNG (HAY SỐ TRUNG BÌNH)
Ví dụ 1:
 Câu 1: Cho điểm trung bình từng môn học trong học kì I của học sinh A là
9,0 7,5 9,5 8,4 8,0 7,8 8,0 8,4 9,0 7,8 8,0
Hãy tính điểm trung bình học kì I (không kể hệ số) của học sinh A ?
Điểm trung bình HK I của học sinh A:
Giải

Slide 4
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
Giả sử ta có một mẫu số liệu {x1, x2, x3, …, xk}
Kí hiệu:
Vậy:
Số trung bình cộng:
?
I-SỐ TRUNG BÌNH CỘNG (HAY SỐ TRUNG BÌNH)

Slide 5
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
?
* Giả sử mẫu số liệu:
x1
n
x2
xk


n2
n1
nk
Trong đó:
ni là tần số của số liệu xi,(i =1, 2, …, k)
n1
n2
nk
Vậy
Số trung bình:

Slide 6
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
Chỉ dựa vào bảng bên
Câu a) Hãy tính điểm trung bình của học sinh ?
Câu b) Có cách tính điểm trung bình nào khác không ? Nếu có cách tính khác thì hãy tính điểm trung bình theo cách tính đó ?
 Câu 2: Điểm trung bình các môn học của học sinh (ở ví dụ 1) được cho trong bảng phân bố tần số và tần suất sau:
I-SỐ TRUNG BÌNH CỘNG (HAY SỐ TRUNG BÌNH)
?

Slide 7
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
Công thức liên hệ giữa số trung bình cộng và tần số
Tần số và tần suất liên hệ bởi công thức
 Câu 2:
I-SỐ TRUNG BÌNH CỘNG (HAY SỐ TRUNG BÌNH)
Hướng dẫn:
Câu a) Dựa vào công thức
với ni là tần số của số liệu xi,(i =1, 2, …, k)
Công thức liên hệ giữa số trung bình cộng và tần suất
Câu b)
?
?
?
Là công thức liên hệ giữa số trung bình và tần suất.
Vậy
Slide 8
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
I-SỐ TRUNG BÌNH CỘNG (HAY SỐ TRUNG BÌNH)
Câu 2:
Điểm trung bình của học sinh:
Câu a)
Giải
Có cách khác để tính điểm trung bình của học sinh.
Câu b)
Áp dụng công thức

Slide 9
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
-Tìm giá trị đại diện của từng lớp? (Trung điểm xi của đoạn (hay nửa khoảng) ứng với lớp thứ i là giá trị đại diện của lớp đó).
-Xem các giá trị đại diện như các giá trị trong bảng phân bố tần số và tần suất rồi tính chiều cao trung bình.
Ví dụ 2: Chiều cao của 36 học sinh (đơn vị cm) được cho trong bảng phân bố tần số và tần suất ghép lớp sau:
Tính chiều cao trung bình của 36 học sinh ?
I-SỐ TRUNG BÌNH CỘNG (HAY SỐ TRUNG BÌNH)
Làm sao tính x ???
Hướng dẫn

Slide 10
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
I- SỐ TRUNG BÌNH CỘNG (HAY SỐ TRUNG BÌNH)
Tần số
Giá trị đại diện
= 165
= 171
Chiều cao của 36 học sinh (đơn vị cm)
Cộng
[150 ; 156)
[156 ; 162)
[162 ; 168)
[168 ; 174]
Lớp số đo chiều cao (cm)
100%
n = 36
16,7
33,3
36,1
13,9
6
12
13
5
Tần suất (%)
Giá trị đại diện
 Lớp [150; 156)
c1 =
150
156
+
2
= 153
153
Chiều cao trung bình:
 Lớp [150; 162)
c2 =
156
162
+
2
= 159
159
 Lớp [162; 168)
c3 =
162
168
+
2
165
 Lớp [168; 174]
c4 =
168
174
+
2
171

Slide 11
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
Ta có thể tính số trung bình cộng của các số liệu thống kê theo các công thức sau:
 Trường hợp cho bảng phân bố tần số, tần suất:
 Trường hợp cho bảng phân bố tần số, tần suất ghép lớp:
Tóm lại:
với ni, fi lần lượt là tần số, tần suất của giá trị xi, n là số các số liệu thống kê (n = n1 + n2 + … + nk).
với ci, ni, fi lần lượt là giá trị đại diện, tần số, tần suất của lớp thứ i, n là số các số liệu thống kê (n = n1 + n2 + … + nk).

Slide 12
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
BT1: Cho 2 bảng sau
Nhiệt độ trung bình của tháng 12 và tháng 2 tại thành phố Vinh từ 1961 đến 1990 (30 năm) lần lượt là.
Hãy tính số trung bình cộng của 2 bảng trên.
Từ kết quả đã tính được ở câu a), có nhận xét gì về nhiệt độ ở thành phố Vinh trong tháng 2 và tháng 12 (của 30 năm đươc khảo sát).
Bảng 1
Bảng 2

Slide 13
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
Vì ,nên có thể nói rằng tại thành phố Vinh, trong 30 năm được khảo sát, nhiệt độ trung bình của tháng 12 cao hơn nhiệt độ trung bình của tháng 2.
Giải BT1:
Gọi số trung bình của bảng 1, bảng 2 lần lượt là x1 , x2
Ta có bảng 1
Ta có bảng 2:
Vậy
a)
b)
Theo câu a) ta có

Slide 14
Người soạn: Trịnh Thị Kim Phượng
3/20/2010
TIẾT HỌC ĐẾN ĐÂY LÀ KẾT THÚC
CHÚC CÁC EM HỌC TỐT
Phần này các em về làm bài tập 1, 2, 5 trong SGK
468x90
 
Gửi ý kiến