Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương IV. §1. Bất đẳng thức

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Đặng Trung Phong
Ngày gửi: 16h:14' 06-03-2011
Dung lượng: 7.3 MB
Số lượt tải: 174
Số lượt thích: 0 người
3. BẤT ĐẲNG THỨC GIỮA TRUNG BÌNH CỌNG VÀ TRUNG BÌNH NHÂN
a. Âäúi våïi hai säú khäng ám
Cho HA = a, HB =b. Tính OD và HC theo a và b. So sánh OD và CH
OD =
CH =
Ta có :OD ≥ CH 

Định lí: với mọi a ≥ 0, b≥ 0 ta có:

Đẳng thức xẩy ra khi và chỉ khi a = b
Ví dụ 1:
Cho a, b ,c R+
Chứng minh:
Ví dụ 2: cho 3 số không âm a, b, c.
Chứng minh: (a+b)(ab+1) ≥ 4ab
 6
Hệ quả:
Cho a, b  R+
Nếu a+b = k không đổi thì ab lớn nhất  a = b
Nếu a.b = k không đổi thì a+b nhỏ nhất  a = b
Ứng dụng:
Trong tất cả các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất.
Trong tất cả các hình chữ nhật có cùng diện tích, hình vuông có chu vi nhỏ nhất.
Ví dụ 1:
Tìm giá trị lớn nhất của hàm số :
y= (x+2)(3-x) trên đoạn [-2; 3]
Ví dụ 2:
Tìm giá trị nhỏ nhất của hàm số :
với x >1
Ta có:
X-1 > 0 và
> 0 x >1
Áp dụng BĐT Côsi ta có:
y ≥ 5
Vậy Miny = 5 khi x = 3
Dấu = xẩy ra  (x-1)2 = 4  x= 3
b. Âäúi våïi ba säú khäng ám
Với a ≥ 0, b ≥ 0, c ≥ 0 , ta có:
Đẳng thức xẩy ra  a = b = c
Ví dụ :
Cho a, b ,c R+. Chứng minh:
Nếu a+b+c = k không đổi thì abc lớn nhất  a=b=c
Nếu a.b.c= k không đổi thì a+b+c nhỏ nhất  a=b=c
Hệ quả:
Củng cố
Bất đẳng thức trung bình cộng và trung bình nhân
Cho 2 số:
Đẳng thức xẩy ra  a = b
Với a ≥ 0, b ≥ 0, ta có:
Với a ≥ 0, b ≥ 0, c ≥ 0 , ta có:
Đẳng thức xẩy ra  a = b = c
Cho 3 số:
Ứng dụng để tìm giá trị nhỏ nhất, lớn nhất của hàm số
468x90
 
Gửi ý kiến

↓ CHÚ Ý: Bài giảng này được nén lại dưới dạng RAR và có thể chứa nhiều file. Hệ thống chỉ hiển thị 1 file trong số đó, đề nghị các thầy cô KIỂM TRA KỸ TRƯỚC KHI NHẬN XÉT  ↓