Tìm kiếm Bài giảng
Chương I. §13. Ước và bội

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thanh Hiền (trang riêng)
Ngày gửi: 14h:52' 16-09-2022
Dung lượng: 1.2 MB
Số lượt tải: 50
Nguồn:
Người gửi: Nguyễn Thanh Hiền (trang riêng)
Ngày gửi: 14h:52' 16-09-2022
Dung lượng: 1.2 MB
Số lượt tải: 50
Số lượt thích:
0 người
Giáo viên: LÂM QUYÊN QUYÊN Trường: Lớp: 6/….
MÔN TOÁN 6
Ước và bội có “họ hàng” với nhau không nhỉ?
Bài 9: ƯỚC VÀ BỘI
1. Ước và bội
a) Lớp 6A có 36 học sinh. Trong một tiết mục đồng diễn thể dục nhịp điệu, lớp xếp thành đội hình gồm những hang đều nhau. Hãy hoàn thành bảng sau vào vở để tìm các cách mà lớp có thể xếp đội hình.
1. Ước và bội
a) Lớp 6A có 36 học sinh. Trong một tiết mục đồng diễn thể dục nhịp điệu, lớp xếp thành đội hình gồm những hang đều nhau. Hãy hoàn thành bảng sau vào vở để tìm các cách mà lớp có thể xếp đội hình.
Cách xếp đội hình
Số hàng
Số học sinh trong một hàng
Thứ nhất
Thứ hai
2
1
36
18
…
1. Ước và bội
Cách xếp đội hình
Số hàng
Số hs trong một hàng
Thứ nhất
1
36
Thứ hai
2
18
Thứ ba
3
12
Thứ tư
4
9
Thứ năm
6
6
Thứ sáu
9
4
Thứ bảy
12
3
Thứ tám
18
2
Thứ 9
36
1
a) Ta có bảng sau.
Giải:
1. Ước và bội
b) Viết số 36 thành tích của hai số bằng các cách khác nhau.
b) Ta có:
36 = 1 . 36; 36 = 2 . 18; 36 = 3 . 12;
36 = 4 . 9; 36 = 6 . 6; 36 = 9 . 4;
Giải:
1. Ước và bội
b) Viết số 36 thành tích của hai số bằng các cách khác nhau.
b) Ta có:
36 = 1 . 36; 36 = 2 . 18; 36 = 3 . 12;
36 = 4 . 9; 36 = 6 . 6; 36 = 9 . 4;
Giải:
1. Ước và bội
Kiến thức trọng tâm
Nếu có số tự nhiên a chia cho số tự nhiên b thì ta nói a là bội của b, còn b gọi là ước của a
Tập hợp các ước của a được kí hiệu là Ư(a)
Tập hợp các ước của a được kí hiệu là Ư(a)
Ví dụ 1:
Ư(4) = {1; 2; 4}
B(6) = {0; 6; 12; 18; …}
1. Ước và bội
1. Ước và bội.
Chú ý:
*Số 0 là bội của tất cả các số tự nhiên khác 0. Số 0 không là ước của bất kì số tự nhiên nào. *Số 1 chỉ có 1 ước là 1. số 1 là ước của mọi số tự nhiên. *Mọi số tự nhiên a lơn hơn 1 luôn có ít nhất là 1 và chính nó.
1. Ước và bội
1)
a) 48 là bội của 6; b) 12 là ước của 48;
c) 48 là bội và cũng là ước của 48; d) 0 là bội của 48.
Giải:
*Chọn từ thích hợp trong các từ “ước”, “bội” thay thế ở mỗi câu sau để có khẳng định đúng. *48 là của 6; b) 12 là của 48;
c) 48 là của 48; d) 0 là của 48.
Thực hành 1
?
?
?
?
?
1. Ước và bội
2) Hãy chỉ ra các ước của 6
Thực hành 1
2) Các ước của 6 là: 1; 2; 3; 6
Giải:
1. Ước và bội
3) Số 24 là bội của những số nào
Thực hành 1
3) Số 24 là bội của các số: 1; 2; 3; 4; 6; 12; 24}
Giải:
2. Cách tìm ước.
Số 18 có thể chia hết cho những số nào?
Ta có số 18 có thể chia hết cho các số: 1; 2; 3; 6; 9;18
Giải:
Ví dụ 2:
Ư(6) = {1; 2; 3; 6}
Ư(18) = {1; 2; 3; 6; 9; 18}
2. Cách tìm ước
2. Cách tìm ước
Hãy tìm các tập hợp sau:
*Ư(17); b) Ư(20).
Thực hành 2
*Ư(17) = {1; 17} *Ư(20) = {1; 2; 4; 5; 10; 20}.
Giải:
3. Cách tìm bội.
a) Chuẩn bị một số mảnh giấy nhỏ có chiều dài là 3 cm. Ghép các mảnh giấy nhỏ đó thành các băng giấy như hình minh họa dưới đây:
3
6
9
12
3. Cách tìm bội.
Độ dài băng giấy đầu tiên là: 3 . 1 = 3 (cm);
Độ dài băng giấy thứ hai là: 3 . 2 = 6 (cm);
Tiếp tục ta sẽ tính độ dài băng giấy thứ ba, thứ tư lần lượt là: 3 . 3 = 9 (cm); 3 . 4 = 12 (cm);
…
*Hãy tính độ dài băng giấy tiếp theo. *Nêu nhận xét về mối liên hệ giữa số đo độ dài (cm) của băng giấy nói trên với 3.
3
6
9
12
3. Cách tìm bội.
3
6
9
12
- Độ dài băng giấy thứ năm là: 3 . 4 = 12 (cm);
Độ dài băng giấy thứ sáu là: 3 . 6 = 18 (cm);
- Nhận xét: Số đo độ dài (cm) của các băng giấy nói trên đều chia hết cho 33.
Giải:
3. Cách tìm bội.
b) Làm thế nào để tìm các bội của 3 một cách nhanh chóng?
b) Ta có thể tìm các bội của 3 bằng cách lấy 3 nhân cho các số 1; 2; 3; 4; …
Giải:
2. Cách tìm bội
Kiến thức trọng tâm
Muốn tìm các bội của số tự nhiên a khác 0, ta có thể nhân a lần lượt với 0, 1, 2, 3, …
Cách tìm B(a):
3. Cách tìm bội.
Bội của a có dạng tổng quát là a . k với k N. ta có thể viết:
B(a) = {a . k | k N}
Chú ý:
2. Cách tìm bội
Hãy tìm các tập hợp sau:
*B(4); b) B(7).
Thực hành 3
*B(4) = {0; 4; 8; 12; 16; …} *B(7) = {0; 7; 14; 21; 35; …}.
Giải:
Bài 9: ƯỚC VÀ BỘI
Sau bài học này, em đã làm được những gì?
*Nhận biết được ước, bội của một số tự nhiên. *Biết cách tìm tập hợp các ước, tập hợp các bội của một số tự nhiên cho trước. *Vận dụng được kiến thức về bội, ước của một số tự nhiên vào giải
Em có biết?
Theo dương lịch, một năm thường có 365 ngày, riêng năm nhuận có thêm 1 ngày và ngày đó được cố định là ngày 29 tháng Hai. Thông thường, năm nhuận có số năm là bội của 4. Các năm 2044, 2086 có phải là năm nhuận không?
Hướng dẫn về nhà
*Học cách tìm ước và bội của một số tự nhiên. *Làm các bài tập 1; 2; 3 trong SGK trang 30 nếu chưa làm kịp tại lớp. *Chuẩn bị nội dung bài mới “ Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố”
MÔN TOÁN 6
Ước và bội có “họ hàng” với nhau không nhỉ?
Bài 9: ƯỚC VÀ BỘI
1. Ước và bội
a) Lớp 6A có 36 học sinh. Trong một tiết mục đồng diễn thể dục nhịp điệu, lớp xếp thành đội hình gồm những hang đều nhau. Hãy hoàn thành bảng sau vào vở để tìm các cách mà lớp có thể xếp đội hình.
1. Ước và bội
a) Lớp 6A có 36 học sinh. Trong một tiết mục đồng diễn thể dục nhịp điệu, lớp xếp thành đội hình gồm những hang đều nhau. Hãy hoàn thành bảng sau vào vở để tìm các cách mà lớp có thể xếp đội hình.
Cách xếp đội hình
Số hàng
Số học sinh trong một hàng
Thứ nhất
Thứ hai
2
1
36
18
…
1. Ước và bội
Cách xếp đội hình
Số hàng
Số hs trong một hàng
Thứ nhất
1
36
Thứ hai
2
18
Thứ ba
3
12
Thứ tư
4
9
Thứ năm
6
6
Thứ sáu
9
4
Thứ bảy
12
3
Thứ tám
18
2
Thứ 9
36
1
a) Ta có bảng sau.
Giải:
1. Ước và bội
b) Viết số 36 thành tích của hai số bằng các cách khác nhau.
b) Ta có:
36 = 1 . 36; 36 = 2 . 18; 36 = 3 . 12;
36 = 4 . 9; 36 = 6 . 6; 36 = 9 . 4;
Giải:
1. Ước và bội
b) Viết số 36 thành tích của hai số bằng các cách khác nhau.
b) Ta có:
36 = 1 . 36; 36 = 2 . 18; 36 = 3 . 12;
36 = 4 . 9; 36 = 6 . 6; 36 = 9 . 4;
Giải:
1. Ước và bội
Kiến thức trọng tâm
Nếu có số tự nhiên a chia cho số tự nhiên b thì ta nói a là bội của b, còn b gọi là ước của a
Tập hợp các ước của a được kí hiệu là Ư(a)
Tập hợp các ước của a được kí hiệu là Ư(a)
Ví dụ 1:
Ư(4) = {1; 2; 4}
B(6) = {0; 6; 12; 18; …}
1. Ước và bội
1. Ước và bội.
Chú ý:
*Số 0 là bội của tất cả các số tự nhiên khác 0. Số 0 không là ước của bất kì số tự nhiên nào. *Số 1 chỉ có 1 ước là 1. số 1 là ước của mọi số tự nhiên. *Mọi số tự nhiên a lơn hơn 1 luôn có ít nhất là 1 và chính nó.
1. Ước và bội
1)
a) 48 là bội của 6; b) 12 là ước của 48;
c) 48 là bội và cũng là ước của 48; d) 0 là bội của 48.
Giải:
*Chọn từ thích hợp trong các từ “ước”, “bội” thay thế ở mỗi câu sau để có khẳng định đúng. *48 là của 6; b) 12 là của 48;
c) 48 là của 48; d) 0 là của 48.
Thực hành 1
?
?
?
?
?
1. Ước và bội
2) Hãy chỉ ra các ước của 6
Thực hành 1
2) Các ước của 6 là: 1; 2; 3; 6
Giải:
1. Ước và bội
3) Số 24 là bội của những số nào
Thực hành 1
3) Số 24 là bội của các số: 1; 2; 3; 4; 6; 12; 24}
Giải:
2. Cách tìm ước.
Số 18 có thể chia hết cho những số nào?
Ta có số 18 có thể chia hết cho các số: 1; 2; 3; 6; 9;18
Giải:
Ví dụ 2:
Ư(6) = {1; 2; 3; 6}
Ư(18) = {1; 2; 3; 6; 9; 18}
2. Cách tìm ước
2. Cách tìm ước
Hãy tìm các tập hợp sau:
*Ư(17); b) Ư(20).
Thực hành 2
*Ư(17) = {1; 17} *Ư(20) = {1; 2; 4; 5; 10; 20}.
Giải:
3. Cách tìm bội.
a) Chuẩn bị một số mảnh giấy nhỏ có chiều dài là 3 cm. Ghép các mảnh giấy nhỏ đó thành các băng giấy như hình minh họa dưới đây:
3
6
9
12
3. Cách tìm bội.
Độ dài băng giấy đầu tiên là: 3 . 1 = 3 (cm);
Độ dài băng giấy thứ hai là: 3 . 2 = 6 (cm);
Tiếp tục ta sẽ tính độ dài băng giấy thứ ba, thứ tư lần lượt là: 3 . 3 = 9 (cm); 3 . 4 = 12 (cm);
…
*Hãy tính độ dài băng giấy tiếp theo. *Nêu nhận xét về mối liên hệ giữa số đo độ dài (cm) của băng giấy nói trên với 3.
3
6
9
12
3. Cách tìm bội.
3
6
9
12
- Độ dài băng giấy thứ năm là: 3 . 4 = 12 (cm);
Độ dài băng giấy thứ sáu là: 3 . 6 = 18 (cm);
- Nhận xét: Số đo độ dài (cm) của các băng giấy nói trên đều chia hết cho 33.
Giải:
3. Cách tìm bội.
b) Làm thế nào để tìm các bội của 3 một cách nhanh chóng?
b) Ta có thể tìm các bội của 3 bằng cách lấy 3 nhân cho các số 1; 2; 3; 4; …
Giải:
2. Cách tìm bội
Kiến thức trọng tâm
Muốn tìm các bội của số tự nhiên a khác 0, ta có thể nhân a lần lượt với 0, 1, 2, 3, …
Cách tìm B(a):
3. Cách tìm bội.
Bội của a có dạng tổng quát là a . k với k N. ta có thể viết:
B(a) = {a . k | k N}
Chú ý:
2. Cách tìm bội
Hãy tìm các tập hợp sau:
*B(4); b) B(7).
Thực hành 3
*B(4) = {0; 4; 8; 12; 16; …} *B(7) = {0; 7; 14; 21; 35; …}.
Giải:
Bài 9: ƯỚC VÀ BỘI
Sau bài học này, em đã làm được những gì?
*Nhận biết được ước, bội của một số tự nhiên. *Biết cách tìm tập hợp các ước, tập hợp các bội của một số tự nhiên cho trước. *Vận dụng được kiến thức về bội, ước của một số tự nhiên vào giải
Em có biết?
Theo dương lịch, một năm thường có 365 ngày, riêng năm nhuận có thêm 1 ngày và ngày đó được cố định là ngày 29 tháng Hai. Thông thường, năm nhuận có số năm là bội của 4. Các năm 2044, 2086 có phải là năm nhuận không?
Hướng dẫn về nhà
*Học cách tìm ước và bội của một số tự nhiên. *Làm các bài tập 1; 2; 3 trong SGK trang 30 nếu chưa làm kịp tại lớp. *Chuẩn bị nội dung bài mới “ Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố”
 









Các ý kiến mới nhất