Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương I. §17. Ước chung lớn nhất

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thị Như Mai
Ngày gửi: 23h:06' 30-11-2021
Dung lượng: 7.0 MB
Số lượt tải: 319
Số lượt thích: 0 người
Tiết 20, 21- BÀI 11: ƯỚC CHUNG. ƯỚC CHUNG LỚN NHẤT
( 2 tiết)
KHỞI ĐỘNG
18 dm
30 dm
+
x lớn nhất
….
Độ dài lớn nhất có thể của mỗi thanh gỗ được cắt?
Cắt thành các thanh gỗ có độ dài như nhau mà không để thừa mẫu gỗ nào?
BÀI 11: ƯỚC CHUNG. ƯỚC CHUNG LỚN NHẤT
( 2 tiết)
Ước chung và ước chung lớn nhất
Cách tìm ước chung lớn nhất

Rút gọn về phân số tối giản.
Tiết 1
1. ƯỚC CHUNG VÀ ƯỚC CHUNG LỚN NHẤT
2. CÁCH TÌM ƯỚC CHUNG LỚN NHẤT
I. ƯỚC CHUNG VÀ ƯỚC CHUNG LỚN NHẤT
Tìm các tập hợp Ư(24) và Ư(28)
3
4
4
7
6
14
8
28
12
24
Gọi ƯC(24, 28) là tập hợp các số vừa là ước của 24, vừa là ước của 28. Hãy viết tập hợp ƯC(24,28).
ƯC (24, 28) = { 1; 2; 4}
Tìm số lớn nhất trong tập ƯC(24, 28).
4
Ước chung và ước chung lớn nhất của hai hay nhiều số
HĐ1
HĐ2
HĐ3
Ta kí hiệu: ƯC(a, b) là tập hợp các ước chung của a và b;
ƯCLN(a, b) là ước chung lớn nhất cả a và b.
ƯC(a, b) là một tập hợp;
ƯCLN(a, b)là một số.
Ta chỉ xét ước chung của các số khác 0.
Ước chung của hai hay nhiều số là ước của tất cả các số đó.
Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp tất cả các ước chung của số đó.
Tìm ƯCLN(18, 30)
Chú ý
 
Độ dài lớn nhất ( đơn vị dm) của mỗi thanh gỗ được cắt chính là ƯCLN (18, 30) = 6.
Vậy, bác thợ mộc nên cắt các tấm gỗ thành các thanh gỗ dài 6dm.
Em hãy giải bài toán mở đầu.
 
Tìm ƯCLN (90, 10)
Ư (90) = { 1; 2; 3; 5; 6; 9; 10; 15; 18; 30; 45; 90}
=> ƯC(90, 10) = {1; 2; 5; 10}.
Vậy ƯCLN(90, 10) = 10
Ư (10) = { 1; 2; 5; 10}
 
Bố có 12 quả bóng màu xanh và 15 quả bóng màu đỏ. Bố muốn chia số bóng cho anh em Việt, Hà và Nam đều như nhau gồm cả bóng màu xanh và bóng màu đỏ. Hỏi bố có thực hiện được điều đó hay không?
Tuần này lớp 6A và 6B gồm 40 học sinh nữ và 36 nam được phân công đi thu gom rác làm sạch bờ biển ở địa phương. Nếu chia nhóm sao cho số học sinh nam và nữ trong các nhóm bằng nhau thì:
Có thể chia được thành bao nhiêu nhóm học sinh?
Vận dụng 1
 
 
b) Có thể chia được thành bao nhiêu nhóm học sinh?
b) Số nhóm chia được nhiều nhất là: x = ƯCLN (36, 40) = 4
2. CÁCH TÌM ƯỚC CHUNG LỚN NHẤT
Bước 1. Phân tích 24 và 60 ra thừa số nguyên tố, ta được:
Bước 2. Ta thấy 2 và 3 là các thừa số nguyên tố chung của 24 và 60.
Ta có thể tìm ƯCLN(24, 60) theo các bước sau:
24 = 2. 2. 2. 3 = 23 .3
60 = 2. 2. 3. 5 =22 .3. 5
Bước 3. Trong các phân tích ra thừa số nguyên tố của 24 và 60, số mũ nhỏ nhất của thừa số chung 2 là 2, số mũ nhỏ nhất của thừa số chung 3 là 1 nên ƯCLN(24, 60) = 22 . 3 = 12
Tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố.
Các bước tìm ƯCLN của hai hay nhiều số lớn hơn 1:
Bước 1. Phân tích mỗi số ra thừa số nguyên tố.
Bước 2. Chọn ra các thừa số nguyên tố chung.
Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất. Tích đó là ƯCLN phải tìm.
Tìm ƯCLN (45, 150),
biết 45 = 32 . 5 và 150 = 2 . 3. 52
Giải:
Có : 45 = 32 . 5
150 = 2 . 3. 52
=> ƯCLN(45, 150) = 3 . 5 = 15
Tìm ƯCLN (36, 84)
Vận dụng 2
 
 
Để tìm ước chung của các số, ta có thể làm như sau:
1. Tìm ƯCLN của các số đó.
2. Tìm các ước của ƯCLN đó.
Tìm ước chung từ ước chung lớn nhất
Ta đã biết ƯC (24, 28) = {1; 2; 4} và ƯCLN (24, 28) = 4
Ta thấy 1; 2; 4 là tất cả ước của 4.
Biết ƯCLN (75, 105)= 15. Hãy tìm ƯC(75, 105
Có: 75 = 3.52.
105 = 3. 5. 7
=> ƯCLN (75, 105) = 3 . 5 = 15
=> ƯC ( 75, 105) = Ư (15) = {1; 3; 5; 15}
Chú ý
- Khi tìm ước chung của các số, người ta thường dựa vào ƯCLN của chúng.
Chẳng hạn:
ƯCLN (168, 180) = 22.31 = 4.3 = 12.
=> ƯC (168, 180) = Ư(12) = {1; 2; 3; 4; 6; 12}
Thử thách nhỏ
Vào ngày thứ Bảy, cô Lan tổ chức cho học sinh đi tham quan Bảo tàng Dân tộc học. Các học sinh đóng tiền mua vé, mỗi em một vé. Số tiền cô Lan thu được từng ngày được ghi lại ở bảng bên.
Hỏi số tiền để mua một vé ( giá vé được tính theo đơn vị nghìn đồng) có thể là bao nhiêu, biết giá vé lớn hơn 2 000 đồng?
Có bao nhiêu học sinh tham gia chuyến đi, biết số học sinh trong lớp trong khoảng từ 20 đến 40 người.
HOẠT ĐỘNG NHÓM ĐÔI
Giải:
 
b) TH1: Giá vé: 7000 đồng
Số học sinh ngày Thứ Hai đóng tiền là:
56 000 : 7000 = 8 (học sinh)
Số học sinh ngày Thứ Ba đóng tiền là:
28 000 : 7000 = 4 (học sinh)
Số học sinh ngày thứ Tư đóng tiền là:
42 000 : 7000 =6 (học sinh)
Số học sinh ngày thứ Năm đóng tiền là:
98 000 : 7000 = 14 ( học sinh)
Tổng số học sinh tham gia chuyến đi là:
8 + 4 + 6 + 14= 32 ( học sinh)
Vậy có 32 học sinh tham gia chuyến đi.
TH2: Giá vé: 14 000 đồng
Số học sinh ngày Thứ Hai đóng tiền là:
56 000 : 14000 = 4 (học sinh)
Số học sinh ngày Thứ Ba đóng tiền là:
28 000 : 14000 = 2 (học sinh)
Số học sinh ngày thứ Tư đóng tiền là:
42 000 : 14000 =3 (học sinh)
Số học sinh ngày thứ Năm đóng tiền là:
98 000 : 14000 = 7 ( học sinh)
Tổng số học sinh tham gia chuyến đi là:
4 + 2 + 3 + 7= 16 ( học sinh)
Vậy có 16 học sinh tham gia chuyến đi.
Vì: Số học sinh trong lớp khoảng 20 đến 40 người => Số học sinh tham gia chuyến đi là 32 học sinh. (giá vé 7000 đồng.)
Tiết 3
3. RÚT GỌN VỀ PHẦN SỐ TỐI GIẢN
+
LUYỆN TẬP – VẬN DỤNG
Vận dụng ƯCLN để rút gọn về phân số tối giản
Ta rút gọn phân số bằng cách chia cả tử và mẫu của phân số đó cho một ước chung khác 1 (nếu có).
 
 
 
 
 
 
Giải:
 
 
Chú ý
Nếu ƯCLN( a, b) = 1 thì hai số a, b được gọi là hai số nguyên tố cùng nhau.
 
Phân số tối giản
a) Tìm ƯCLN(4, 9)
Có: ƯCLN(4,9) = 1.
=> Hai số 4 và 9 là hai số nguyên tố cùng nhau.
 
 
Phân số tối giản là phân số có tử và mẫu là hai số nguyên tố cùng nhau.
LUYỆN TẬP
2.30. Tìm tập hợp các ước chung của:
a) 30 và 45 ; b) 42 và 70
Trả lời:
 
 
2.33. Cho hai số a = 72 và b = 96.
a) Phân tích a và b ra thừa số nguyên tố;
b) Tìm ƯCLN(a, b), rồi tìm ƯC(a, b).
Giải:
a) a = 72 = 23.32
b = 96 = 25.3
b) ƯCLN (a,b) = 23.3=24
=> ƯC (a, b) = Ư (24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24}
 
Giải:
 
 
 
Giải:
 
 
 
2.35. Hãy cho hai ví dụ về hai số có ƯCLN bằng 1 mà cả hai đều là hợp số.
Giải:
+18 và 35 đều là hợp số, nhưng ƯCLN(18,35) = 1
+ 27 và 16 đều là hợp số, những ƯCLN ( 27,16) = 1
+ 15 và 49 đều là hợp số, nhưng ƯCLN (15, 49) = 1
…………………………………………………………………………
HƯỚNG DẪN VỀ NHÀ
CẢM ƠN CÁC EM ĐÃ CHÚ Ý BÀI GIẢNG!
468x90
 
Gửi ý kiến