Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Các bài Luyện tập

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Lê Thành Đô (trang riêng)
Ngày gửi: 21h:46' 10-11-2011
Dung lượng: 609.5 KB
Số lượt tải: 925
Số lượt thích: 0 người
SỞ GIÁO GIÁO DỤC VÀ ĐÀO TẠO ĐẮK LẮK
Kính chào quý thầy cô về dự thi giáo án điện tử!
Câu 1: Ghép mỗi câu ở cột bên trái với mỗi câu ở cột bên phải để được tính chất đúng
1. Tam giác A’B’C’ gọi là đồng dạng với tam giác ABC nếu:
2. Nếu một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại thì
3. Nếu  A’B’C’  ABC
theo theo tỉ số k
4. Mỗi tam giác thì
a. đồng dạng với chính nó
b. thì  ABC  A’B’C’
theo tỉ số
c. Nó tạo thành tam giác mới đồng dạng với tam giác đã cho
d.

s
s
Bài cũ
Câu 2: Khoanh tròn vào chữ cái đứng trước câu đúng
A. Hai tam giác bằng nhau thì đồng dạng với nhau

B. Hai tam giác đồng dạng với nhau thì bằng nhau

C. Cả A và B đều đúng

D. Cả A và B đều sai

Bài củ
Bài tập 24 sgk tr 72:
A’B’C’  A”B”C” theo tỉ số đồng dạng k1,
 A”B”C”  ABC theo tỉ số đồng dạng k2. Hỏi tam giác A’B’C’đồng dạng với tam giác ABC theo tỉ số nào?
s
s
Trả lời:
Tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số k1.k2
Bài củ
Luyện tập
Tiết 43
Giải
*Cách dựng:
-Trên AB lấy điểm D sao cho
-Từ D kẻ DE // BC (E AC)
-Dựng:
theo trường hợp cạnh-cạnh-cạnh
*Chứng minh:
-Vì: DE // BC, theo định lí về tam giác đồng dạng ta có:
∆ADE∽∆ABC theo tỉ số k =
Mà ∆A’B’C’= ∆ADE(cách dựng), nên suy ra:
∆A’B’C’∽∆ABC theo tỉ số k =
Tiết 43: LUYỆN TẬP
Tiết 43: LUYỆN TẬP
Bài 2 (bài tập 27 Trang 72 SGK)
∆AMN∽∆ABC
∆AMN∽∆MBL
∆MBL∽∆ABC
(Vì: MN // BC);
(Vì: ML // AC)
(Vì:
∆AMN∽∆ABC
; ∆MBL∽∆ABC )
GT
KL
∆ABC;
MN //BC; ML // AC
a) Nêu các cặp tam giác đồng dạng
b) Viết các cặp góc bằng nhau và các tỉ số đồng dạng tương ứng của các tam giác đồng dạng ở câu a
Giải:
a)
b)
∆AMN∽∆ABC
∆MBL∽∆ABC
∆AMN∽∆MBL
Bài tập 27 sgk tr 72:
Từ điểm M thuộc cạnh AB của tam giác ABC với AM = MB, kẻ các tia song song với AC và BC , chúng cắt BC, AC lần lượt tại L và N.
a) Nêu tất cả các cặp tam giác đồng dạng
b) đối với mỗi cặp tam giác đồng dạng, hãy viết các cặp góc bằng nhau và tỉ số đồng dạng tương ứng
Tiết 43: LUYỆN TẬP
Bài 3 (bài tập 28 Trang 72 SGK)
∆A’B’C’∽∆ABC theo tỉ số k =
Tính tỉ số chu vi của hai tam giác đã cho.
Cho biết hiệu chu vi của hai tam giác trên là 4dm, tính chu vi của mỗi tam giác.
Giải
Gọi chu vi của tam giác A’B’C’ là 2p’, chu vi của tam giác ABC là 2p.
Ta có tỉ số hai chu vi của tam giác là:

Do đó:
a)
b)
(1)
(Vì: 2p – 2p’ = 4 dm)
Suy ra:
Từ (1), suy ra:
Củng cố
-Hiểu định nghĩa,tính chất về hai tam giác đồng dạng
-Vận dụng tốt định lý về hai tam giác đồng dạng để chứng minh hai tam giác đồng dạng,vẽ tam giác đồng dạng với một tam giác đã cho
-Tỷ số chu vi của hai tam giác đồng dạng bằng tỷ số đồng dạng
Hướng dẫn về nhà
-Bài 27,28(SBT- trang 71)
-Đọc trước bài Trường hợp đồng dạng thứ nhất của hai tam giác
Xin chân thành cảm ơn
các thầy giáo, cô giáo đã đến dự giờ!
Cảm ơn tập thể lớp
468x90
 
Gửi ý kiến