Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Phép Vị Tự

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: NAD
Người gửi: Đỗ Thị Hoa (trang riêng)
Ngày gửi: 08h:40' 18-12-2009
Dung lượng: 167.5 KB
Số lượt tải: 8
Số lượt thích: 0 người
PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN
CÁC KHỐI ĐA DIỆN ĐỀU
1. Phép vị tự trong không gian
Định nghĩa :
Cho số k không đổi khác 0 và một điểm O cố định. Phép biến hình trong không gian biến mỗi điểm M thành M’ sao cho gọi là phép vị tự. Điểm O gọi là tâm vị tự, số k gọi là tỉ số vị tự.
Tính chất cơ bản của phép vị tự:
Nếu phép vị tự tỉ số k biến 2 điểm M, N thành 2 điểm M’, N’ thì
Và do đó M’N’ = |k|.MN
Phép vị tự biến ba điểm thẳng hàng thành 3 điểm thẳng hàng, bốn điểm đồng phẳng thành bốn điểm đồng phẳng
Ví dụ :Cho hình tứ diện ABCD. Gọi A’, B’, C’, D’ lần lượt là trọng tâm các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng có phép vị tự biến tứ diện ABCD thành A’B’C’D’
Gọi G là trọng tâm của tứ diện ABCD. Khi đó ta biết rằng :
Suy ra phép vị tự tâm G, tỉ số k = -1/3 biến các điểm A, B, C, D lần lượt thành các điểm A’, B’, C’, D’.
Vậy V biến tứ diện ABCD thành tứ diện A’B’C’D’
?1/ Trong trường hợp nào phép vị tự là 1 phép dời hình
2.Hai hình đồng dạng

Định nghĩa 2: Hình H được gọi là đồng dạng với hình H’ nếu có một phép vị tự biến hình H thành hình H1 mà hình H1 bằng hình H’
Ví dụ 2 (SGK)
3.Khối đa diện đều và sự đồng dạng của khối đa diện
Khối đa diện lồi: Một khối đa diện được gọi là khối đa diện lồi nếu với bất kì 2 điểm A và B nào của nó thì mọi điểm của đoạn thẳng AB cũng thuộc khối đó.
?2/ Tại sao các khối đa diện trên hình không phải là những khối đa diện lồi ?
3.Khối đa diện đều và sự đồng dạng của khối đa diện
Định nghĩa 3:
Khối đa diện đều là một khối đa diện lồi có hai tính chất sau đây :
Các mặt là là những đa giác đều có cùng số cạnh
Mỗi đỉnh là đỉnh chung của cùng một số cạnh
Khối đa diện đều mà mỗi mặt là những đa giác đều n cạnh và mỗi đỉnh là đỉnh chung của p cạnh được gọi là khối đa diện đều loại {n;p}
?3/ Quan sát các khối đa diện đều sau đây, cho biết chúng thuộc loại nào?
Khối đa diện đều mà mỗi mặt là những đa giác đều n cạnh và mỗi đỉnh là đỉnh chung của p cạnh được gọi là khối đa diện đều loại {n;p}
Đa diện đều loại {3;3}
Đa diện đều loại {4;3}
?3/ Quan sát các khối đa diện đều sau đây, cho biết chúng thuộc loại nào?
Khối đa diện đều mà mỗi mặt là những đa giác đều n cạnh và mỗi đỉnh là đỉnh chung của p cạnh được gọi là khối đa diện đều loại {n;p}
Đa diện đều loại {3;4}
?3/ Quan sát các khối đa diện đều sau đây, cho biết chúng thuộc loại nào?
Khối đa diện đều mà mỗi mặt là những đa giác đều n cạnh và mỗi đỉnh là đỉnh chung của p cạnh được gọi là khối đa diện đều loại {n;p}
Đa diện đều loại {3;5}
?3/ Quan sát các khối đa diện đều sau đây, cho biết chúng thuộc loại nào?
Khối đa diện đều mà mỗi mặt là những đa giác đều n cạnh và mỗi đỉnh là đỉnh chung của p cạnh được gọi là khối đa diện đều loại {n;p}
Đa diện đều loại {5;3}
468x90
 
Gửi ý kiến