Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương IV. §7. Phương trình quy về phương trình bậc hai

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: duc binh
Ngày gửi: 11h:21' 28-02-2022
Dung lượng: 299.7 KB
Số lượt tải: 411
Số lượt thích: 0 người
Kiểm tra bài cũ

Giải phương trình: t2 - 13t + 36 = 0
Các phương trình sau có phải là phương trình bậc hai không?
A) x4 - 13x2 + 36 = 0
B) x2 - 3x + 6 1

C) (x + 1) (x2 + 2x - 3) = 0
B) x2 - 3x + 6 1

C) (x + 1) (x2 + 2x - 3) = 0
Phương trình chứa ẩn ở mẫu
Phương trình tích
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
A) x4 - 13x2 + 36 = 0
Phương trình trïng ph­¬ng
1. PHƯƠNG TRÌNH TRÙNG PHƯƠNG
Phương trình trùng phương là phương trình có dạng: ax4 + bx2 + c = 0 (a ≠ 0)
*Phương trình trùng phương là phương trình có dạng: ax4 + bx2 + c = 0 (a ≠ 0).
1. PHƯƠNG TRÌNH TRÙNG PHƯƠNG
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
Cho các phương trình sau:
Hãy chỉ ra các phương trình là phương trình trùng phương và chỉ rõ các hệ số của từng phương trình.
?
x4 + 2x2 – 1 = 0
b) x4 + 2x3 – 3x2 + x – 5 = 0
c) x3 + 2x2 – 4x + 1 = 0
d) 3x4 + 2x2 = 0
e) x4 – 16 = 0
?
f) 5x4 = 0
g) 0x4 + 2x2 + 3 = 0
Các phương trình là phương trình trùng phương:
Các phương trình không phải là phương trình trùng phương:
(a=1,b=2,c=-1)
(a=3,b=2,c=0)
(a=1,b=0,c=-16)
(a=5,b=0,c=0)
Hãy chỉ ra các phương trình là phương trình trùng phương và chỉ rõ các hệ số của từng phương trình.
*Phương trình trùng phương là phương trình có dạng: ax4 + bx2 + c = 0 (a ≠ 0).
VD: x4 - 13x2 + 36 = 0
là phương trình trïng ph­¬ng
1. PHƯƠNG TRÌNH TRÙNG PHƯƠNG
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
Phương trình trùng phương là phương trình có dạng: ax4 + bx2 + c = 0 (a ≠ 0)
VD1:Giải phương trình:
x4 - 13x2 + 36 = 0 (1)
Giải:
- Đặt x2=t. Điều kiện là t ≥ 0. Ta được một phương trình bậc hai đối với ẩn t,
t2 – 13 t + 36 = 0 (2)
- Giải phương trình (2) ta được:
Cả hai giá trị 4 và 9 đều thoả mãn điều kiện t≥0.
*Với t = 4, ta có x2 = 4 => x1= -2, x2= 2
*Với t = 9, ta có x2 = 9 => x3= -3,x4 = 3
Vậy phương trình (1) có bốn nghiệm
x1= -2, x2=2, x3= -3,x4 =3
VD1:Giải pt
: x4 - 13x2 + 36 = 0 (1)
Giải:
Đặt x2=t. Điều kiện là t ≥ 0. Ta được một phương trình bậc hai đối với ẩn t, t2 – 13 t + 36 = 0 (2)
- Giải phương trình (2):
Cả hai giá trị 4 và 9 đều thoả mãn điều kiện t≥0.
* Với t = 4, ta có x2 = 4 => x1= -2, x2= 2
* Với t = 9, ta có x2 = 9 => x3= -3,x4 = 3
Vậy phương trình (1) có bốn nghiệm
x1= -2, x2=2, x3= -3,x4 =3
1. PHƯƠNG TRÌNH TRÙNG PHƯƠNG
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
Tương tự hãy giải các phương trình sau:
a) 4x4 + x2 – 5 = 0 ; b) 3x4 + 4x2 + 1 = 0.
1. PHƯƠNG TRÌNH TRÙNG PHƯƠNG
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
Tương tự hãy giải các phương trình sau:
a) 4x4 + x2 – 5 = 0 ; b) 3x4 + 4x2 + 1 = 0.
Giải:a) 4x4 + x2 – 5 = 0
Đặt x2 = t (t≥ 0)
Ta được phương trình:
4t2 + t – 5 = 0
Vì a + b + c = 4 + 1 – 5 = 0
Nên phương trình có nghiệm:
t1 = 1 (phù hợp điều kiện);
t2 = (loại)
Với t1 = 1 => x2 = 1 =>x1 =1; x2=-1
Vậy phương trình đã cho có hai nghiệm là: x1 = 1; x2 = -1
Giải: b) 3x4 + 4x2 + 1 = 0
Đặt x2 = t (t 0)
Ta được phương trình:
3t2 + 4t +1 = 0
Vì a - b + c = 3 – 4 + 1 = 0
Nên phương trình có nghiệm:
t1 = -1 (loại) ; t2 = (loại)
Vậy phương trình đã cho vô nghiệm.
Cách giải:
Để giải phương trình trùng phương: ax4 + bx2 + c = 0 (a ≠ 0) (1)
- Đặt x2 = t (t ≥0),
ta được phương trình bậc hai ẩn t
at2 + bt + c = 0 (2)
- Giải phương trình (2) ta tìm được t từ đó lấy giá trị t ≥ 0, bỏ giá trị t < 0, giải phương trình x2 = t (với t ≥ 0) ta tìm được x.
- Kết luận.
VD1:Giải pt
:x4 - 13x2 + 36 = 0 (1)
Giải:
Đặt x2=t. Điều kiện là t ≥ 0. Ta được một phương trình bậc hai đối với ẩn t, t2 – 13 t + 36 = 0 (2)
- Giải phương trình (2):
Cả hai giá trị 4 và 9 đều thoả mãn điều kiện t≥0.
* Với t = 4, ta có x2 = 4 => x1= -2, x2= 2
* Với t = 9, ta có x2 = 9 => x3= -3,x4 = 3
Vậy phương trình (1) có bốn nghiệm
x1= -2, x2=2, x3= -3,x4 =3
1. PHƯƠNG TRÌNH TRÙNG PHƯƠNG
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
1. Phương trình trùng phương
Cách giải
Để giải phương trình trùng phương:
ax4 + bx2 + c = 0
(a ≠ 0) (1)
-Đặt x2 = t ( vì x2 ≥ 0, với mọi x, nờn t ≥0)
-Ta được phương trỡnh bậc hai ẩn t
at2 + bt + c = 0 (2)
-Giải phương trình(2) ta tìm được t từ đó lấy giá trị t ≥ 0, bỏ giá trị t < 0, giải phương trình x2 = t (với t ≥ 0) ta tìm được x.
- Kết luận.
2. Phương trình chứa ẩn ở mẫu thức
Bước 1: Tìm điều kiện xác định của phương trình.
Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu thức.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: Trong các giá trị vừa tìm được của ẩn, loại các giá trị không thỏa mãn điều kiện xác định, các giá trị thỏa mãn điều kiện xác định là nghiệm của phương trình đã cho.
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
1. Phương trình trùng phương
2. Phương trình chứa ẩn ở mẫu thức
Bước 1: Tìm điều kiện xác định của phương trình.
Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu thức.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: Trong các giá trị vừa tìm được của ẩn, loại các giá trị không thỏa mãn điều kiện xác định, các giá trị thỏa mãn điều kiện xác định là nghiệm của phương trình đã cho.
Tìm chỗ sai trong lời giải sau?
4(x + 2) = -x2 - x +2
<=> 4x + 8 = -x2 - x +2
<=> 4x + 8 + x2 + x - 2 = 0
<=> x2 + 5x + 6 = 0
Δ = 5 2 - 4.1.6 = 25 -24 = 1
Do 1 > 0, nên Δ > 0 nên phương trình có hai nghiệm phân biệt:
Vậy phương trình có nghiệm: x1 = -2, x2 = -3
ĐK: x ≠ - 2, x ≠ - 1
(Không TMĐK)
(TMĐK)
<=>
=>
Vậy phương trình có nghiệm: x = -3
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
1. Phương trình trùng phương
2. Phương trình chứa ẩn ở mẫu thức
Bước 1: Tìm điều kiện xác định của phương trình.
Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu thức.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: Trong các giá trị vừa tìm được của ẩn, loại các giá trị không thỏa mãn điều kiện xác định, các giá trị thỏa mãn điều kiện xác định là nghiệm của phương trình đã cho.
3/ Phương trình tích:
Ví dụ 2: (sgk) Giải phương trình:
(x + 1)(x2 + 2x – 3) = 0
 x + 1 = 0 hoặc x2 + 2x – 3 = 0
Giải các phương trình này ta được các nghiệm của phương trình là:
x1 = –1; x2 = 1; x3 = –3.
A(x).B(x)=0
 A(x)=0 hoặc B(x)=0
TIẾT 52 - 53: PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC HAI
1. Phương trình trùng phương
2. Phương trình chứa ẩn ở mẫu thức
3/. Phương trình tích:
?3: (sgk) Giải phương trình bằng cách đưa về phương trình tích.
x3 + 3x2 + 2x = 0
x(x2 + 3x + 2) = 0


A(x).B(x)=0
A(x)=0
B(x)=0
Học bài và làm các bài tập 35, 36,37,38 (sgk)
Hướng dẫn về nhà
468x90
 
Gửi ý kiến