Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương I. §9. Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Hải Hưng (trang riêng)
Ngày gửi: 21h:15' 12-10-2013
Dung lượng: 1.3 MB
Số lượt tải: 1625
Số lượt thích: 2 người (Nguyễn Thị Diễm Kiều, Lanh huy)
HỘI THI GVDG TRƯỜNG THCS MINH TÂN
GV: NGUYỄN HẢI HƯNG
NHIỆT LIỆT CHÀO MỪNG
QUÝ THẦY CÔ VỀ DỰ GIỜ THĂM LỚP
Kiểm tra bài cũ:
Cu 1. Cc s? nguyn t? nh? hon 10 l:
2; 3; 5; 7
Cu 2. S? cĩ u?c nguyn t? khc 2 v 5 l:
Cả 3 đáp án trên
Cu 2. S? th?p phn l:
3,7
Tiết 15. Bài 9:
SỐ THẬP PHÂN HỮU HẠN.
SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN.
1, Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn:
Ví dụ 1: Viết các phân số dưới dạng số thập phân.
3
20
37
25
;
Giải
3
20
= 0,15
37
25
= 1,48
Các số như 0,15; 1,48 được gọi là số thập phân hữu hạn.
Ví dụ 2: Viết phân số dưới dạng số thập phân.
5
12
Giải
5
12
= 0,4166…
= 0,41(6)
Số 0,41(6) là 1 số thập phân vô hạn tuần hoàn có chu kỳ là 6.
Viết các phân số dưới dạng số thập phân và chỉ ra chu kì của nó.
1
9
-17
11
;
Giải
1
9
= 0,111…
= 0,(1)
Số 0,(1) là một số thập phân vô hạn tuần hoàn có chu kỳ là 1
-17
11
= - 0,5454…
= - 0,(54)
Số -0,(54) là một số thập phân vô hạn tuần hoàn có chu kỳ là 54
3
20
37
25
5
12
3
22.5
=
= 0,15
37
52
=
= 1,48
5
22.3
=
= 0,41(6)
-7
50
-7
2.52
=
= -0,14
1
9
7
32
=
= 0,(1)
-17
11
= - 0,(54)
2. Nhận xét:
Nếu một phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn.
Nếu một phân số tối giản với mẫu dương mà mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân vô hạn tuần hoàn.
Nếu một phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn.
Nếu một phân số tối giản với mẫu dương mà mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân vô hạn tuần hoàn.
2. Nhận xét:
Ví dụ:
Phân số viết được dưới dạng số thập phân hữu hạn không? Vì sao?
- 6
75
Ví dụ:
Phân số viết được dưới dạng số thập phân hữu hạn vì:
- 6
75
+ là phân số tối giản.
- 6
75
+ Mẫu 25 = 52 không có ước nguyên tố khác 2 và 5.
Ta có
- 6
75
-2
25
=
= -0,08
- 2
25
=
Ví dụ:
Phân số viết được dưới dạng số thập phân vô hạn tuần hoàn không? Vì sao?
7
30
Ví dụ:
Phân số viết được dưới dạng số thập phân vô hạn tuần hoàn vì:
7
30
+ là phân số tối giản.
7
30
+ Mẫu 30 = 2.3.5 có ước nguyên tố khác 2 và 5.
7
30
= 0,2333…
Ta có
= 0,2(3)
?
Trong các phân số sau đây phân số nào viết được dưới dạng số thập phân hữu hạn, phân số nào viết được dưới dạng số thập phân vô hạn tuân hoàn? Viết dạng thập phân của các phân số đó.
1
4
-5
6
13
50
-17
125
11
45
7
14
;
;
;
;
;
Trò chơi
Nhanh lên bạn ơi!
Trò chơi
Nhanh lên bạn ơi!
Đội 1
Đội 2
Dạng thập phân hữu hạn của các phân số:
Dạng thập phân vô hạn tuần hoàn của các phân số:
Viết dạng thập phân
của các phân số:
0,(4)
1
9
. 4
4
9
=
=
= 0,(1).4
Ví dụ:
Mỗi số hữu tỉ được biểu diễn bởi một số thập phân hữu hạn hoặc vô hạn tuần hoàn. Ngược lại, mỗi số thập phân hữu hạn hoặc vô hạn tuần hoàn biểu diễn một số hữu tỉ.
Bài tập 65/SGK /34
Giải thích vì sao các phân số sau viết được dưới dạng số thập phân hữu hạn rồi viết chúng dưới dạng đó:
Giải
Các phân số trên viết được dưới dạng số thập phân hữu hạn vì các phân số đó tối giản, có mẫu dương và mẫu không có ước nguyên tố khác 2 và 5.
Bài tập 65/SGK /34
Giải thích vì sao các phân số sau viết được dưới dạng số thập phân vô hạn tuần hoàn rồi viết chúng dưới dạng đó:
Giải
Các phân số trên viết được dưới dạng số thập phân vô hạn tuần hoàn vì các phân số đó tối giản, có mẫu dương và mẫu có ước nguyên tố khác 2 và 5.
Hướng dẫn về nhà:
Nắm vững điều kiện để một phân số viết được dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn.
Học thuộc kết luận về quan hệ giữa số hữu tỉ và số thập phân
Bài về nhà 65, 66, 68, 70, 71 SGK trg 34, 35.
468x90
No_avatar

cũng tạm được

 

 
Gửi ý kiến