Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương I. §2. Cực trị của hàm số

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: Nhiều tác giả
Người gửi: Phan Hồng Phúc
Ngày gửi: 08h:25' 21-09-2021
Dung lượng: 322.0 KB
Số lượt tải: 96
Số lượt thích: 0 người
GIÁO ÁN TOÁN GIẢI TÍCH 12

CỰC TRỊ HÀM SỐ
I - KHÁI NIỆM CỰC ĐẠI, CỰC TIỂU
Đọc và nghiên cứu định nghĩa cực đại, cực tiểu của hàm số. (SGK - trang 12)


- Phát biểu ý kiến, biểu đạt nhận thức của bản thân.
II - ĐIỀU KIỆN ĐỦ ĐỂ HÀM SỐ CÓ CỰC TRỊ
Hàm số y =
có cực trị hay kông ? Tại sao ?
Chỉ ra được hàm số đạt cực tiểu tại x = - 1, giá trị cực tiểu y = -
. Hàm số đạt cực đại tại x = 1, giá trị cực đại y =
.
- Từ bảng, nhận xét đợc sự liên hệ giữa đạo hàm và các điểm cực trị của hàm số.
3)Điều kiện đủ để hàm số đạt cực trị:
a) Nếu f’(x) >0; x(a; x0) và f’(x) <0; x(x0;b) thì hàm số đạt cực đại tại x0.
Định lý 2: (điều kiện đủ 1)
Giả sử hàm số f liên tục trên khoảng (a; b) chứa điểm x0 và có đạo hàm trên các khoảng (a; x0) và ( x0;b). Khi đó:
b) Nếu f’(x) <0; x(a; x0) và f’(x) >0; x(x0;b) thì hàm số đạt cực tiểu tại x0.
Quy tắc 1: Để tìm cực trị hàm số ta làm các bước sau:
Tìm y’
Tìm các điểm xi (i=1, 2,...) tại đó đạo hàm của hàm số bằng 0 hoặc hàm số liên tục nhưng không có đạo hàm.
Lập bảng biến thiên, xét dấu đạo hàm.
Từ Bảng biến thiên suy ra các điểm cực trị
Quy tắc 2: Để tìm cực trị hàm số ta làm các bước sau:
Tìm f’(x)
Tìm các nghiệm xi (i=1, 2,...) của phương trình f’(x)=0.
Tìm f”(x) và tính f”(xi).
* Nếu f’’(xi) <0 thì hàm số f đạt cực đại tại điểm xi.
* Nếu f’’(xi) >0 thì hàm số f đạt cực tiểu tại điểm xi.
Dạng 1: Tìm cực trị của hàm số.
PP: Dùng dấu hiệu 1 hoặc dấu hiệu 2.
Dạng 2: Tìm điều kiện của tham số để hàm số đạt CĐ, CT hay đạt cực trị tại một điểm.
PP: B1: Dùng dấu hiệu 1 lập phương trình hoặc dấu hiệu 2 lập hệ gồm phương trình và bất phương trình ẩn là tham số.
B2: Giải để tìm giá trị của tham số.
B3: Thử lại (khi sử dụng dấu hiệu 1).
Dạng 3: CMR hàm số luôn có 1 CĐ và 1 CT.
PP: Ta CM y’=0 luôn có 2 nghiệm phân biệt và qua 2 nghiệm đó y’ đổi dấu 2 lần
DẠNG BÀI TẬP VÀ CÁCH GIẢI
Bài tập áp dụng
Áp dụng quy tắc 1, hãy tìm cực trị của các hàm số sau:
b) y = g(x) = x3(1 - x)2
a) y = f(x) =
Áp dụng quy tắc 2, hãy tìm các điểm cực trị của các hàm số sau:

c) y = f(x) = sin2x + cos2x

d) y = g(x) =
TIẾT HỌC KẾT THÚC
468x90
 
Gửi ý kiến