Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương IV. §8. Cộng, trừ đa thức một biến

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thị Dung A
Ngày gửi: 19h:47' 22-03-2011
Dung lượng: 309.0 KB
Số lượt tải: 184
Số lượt thích: 0 người
Giáo viên: Nguyễn Thị Dung
Trường THCS Nguyễn Huệ
chúc mừng quý thầy cô về dự giờ thăm lớp
Phòng GD-ĐT Đông Hà
Bài 1: Cho đa thức P(x) = x2 + 2x4 + 4x3 - 5x6 + 3x2 - 4x - 1
a) Sắp xếp các hạng tử của P(x) theo luỹ thừa giảm dần của biến?
b) Tim h? s? cao nh?t và h? s? t? do c?a P(x).
Kiểm tra bài cũ
Giải:
a) P(x) = - 5x6 + 2x4 + 4x3 + (3x2 + x2) - 4x - 1
P(x) = - 5x6 + 2x4 + 4x3 + 4x2 - 4x - 1
b) H? s? cao nh?t là -5 ; H? s? t? do là -1
Bài 2: Cho hai đa thức P = 3x5 + 6x4 - x3 + x2 - x - 1
Q = - x4 + x3 + 6x + 2
Hãy tính P + Q = ?
Giải:
(3x5 + 6x4 - x3 + x2 - x - 1) + (- x4 + x3 + 6x + 2)
P + Q =
= 3x5 + 5x4 + x2 + 5x + 1
= 3x5 + 6x4 - x3 + x2 - x - 1 - x4 + x3 + 6x + 2
= 3x5 + (6x4 - x4) +(- x3 + x3) + x2 +(- x + 6x) + (-1 + 2)
1. Cộng hai đa thức một biến:
Ví dụ: Cho hai đa thức P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
Hãy tính tổng của chúng
Giải:
(3x5 + 6x4 - x3 + x2 - x - 1) + (-x4 + x3 + 6x + 2)
Cách 1
P(x) + Q(x) =
= 3x5 + 5x4 + x2 + 5x + 1
= 3x5 + 6x4 - x3 + x2 - x - 1 - x4 + x3 + 6x + 2
= 3x5 + (6x4 - x4) + (-x3 + x3) + x2 + (-x + 6x) + (-1 + 2)
Cách 2
P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
P(x) + Q(x) =
+ 5x4
+ x2
+ 5x
+ 1
+
3x5
M(x) = 7x5 + x4 - 2x3 + 4
N(x) = 3x5 + 5x3 - 6
Cho các đa thức:
Tính M(x) + N(x) theo hai cách
M(x) = 7x5 + x4 - 2x3 + 4
N(x) = 3x5 + 5x3 - 6
Cho các đa thức:
Tính M(x) + N(x) theo hai cách
Cách 1
Cách 2
M(x) + N(x) = (7x5 + x4 - 2x3 + 4) + (3x5 + 5x3 - 6)
= 7x5 + x4 - 2x3 + 4 + 3x5 + 5x3 - 6
= (7x5 + 3x5) + x4 +(-2x3 + 5x3) +(4 - 6)
= 10x5 + x4 + 3x3 - 2
M(x) = 7x5 + x4 - 2x3 + 4
N(x) = 3x5 + 5x3 - 6
M(x) + N(x) =
+
Trong hai cách làm ở trên cách nào nhanh hơn ?
- 2
10x5
+ x4
+ 3x3
1. Cộng hai đa thức một biến:
Ví dụ: Cho hai đa thức P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
Hãy tính tổng của chúng
Giải:
= (3x5 + 6x4 - x3 + x2 - x - 1) + (-x4 + x3 + 6x + 2)
Cách 1
P(x) + Q(x)
= 3x5 + 5x4 + x2 + 5x +1
= 3x5 + 6x4 - x3 + x2 - x - 1 - x4 + x3 + 6x + 2
= 3x5 +(6x4 - x4) +(-x3 + x3) + x2 +(-x +6x) +(-1+2)
Cách 2
P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
P(x) + Q(x) =
+ 5x4
+ x2
+ 5x
+ 1
+
+ Sắp xếp các hạng tử của hai đa
thức cùng theo luỹ thừa giảm
d?n (hoặc tang d?n) của biến.
+ Dặt các đơn thức đồng dạng ở
cùng một cột.
+ thực hiện phép cộng theo cột
dọc tương tự như cộng các số.
2. Tr? hai đa thức một biến:
Ví dụ:
3x5
Khi cộng hai đa thức một biến theo c?t d?c ta c?n chú ý:
Cách 1
Tinh P(x) - Q(x)
1. Cộng hai đa thức một biến:
Ví dụ: Cho hai đa thức P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
Hãy tính tổng của chúng
Giải:
Cách 1
Cách 2
P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
P(x) + Q(x) =
+ 5x4
+ x2
+ 5x
+ 1
+
2. Tr? hai đa thức một biến:
Ví dụ: Tính P(x) - Q(x)
= (3x5 + 6x4 - x3 + x2 - x - 1) - (- x4 + x3 + 6x + 2)
Cách 1
P(x) - Q(x)
= 3x5 + 7x4 - 2 x3 + x2 - 7x - 3
= 3x5 + 6x4 - x3 + x2 - x -1 + x4 - x3 - 6x - 2
= 3x5 + (6x4 + x4) + (-x3 - x3) + x2 + (-x - 6x) + (-1- 2)
Cách 2
P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
P(x) - Q(x) =
+ 7x4
+ x2
- 7x
- 3
-
- 2x3
+ Sắp xếp các hạng tử của hai
đa thức cùng theo luỹ thừa
giảm d?n (hoặc tang d?n) của
biến.
+ Dặt các đơn thức đồng dạng ở
cùng một cột.
+ thực hiện phép tr? theo cột
dọc tương tự như tr? các số.
3x5
3x5
Khi tr? hai đa thức một biến theo cột dọc ta cần chú ý:
1. Cộng hai đa thức một biến:
Ví dụ: Cho hai đa thức P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
Hãy tính tổng của chúng
Giải:
Cách 1
Cách 2
P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
P(x) + Q(x) =
+ 5x4
+ x2
+ 5x
+ 1
+
2. Tr? hai đa thức một biến:
Ví dụ: Tinh P(x) - Q(x)
= (3x5 + 6x4 - x3 + x2 - x - 1) - (-x4 + x3 + 6x + 2)
Cách 1
P(x) - Q(x)
= 3x5 + 7x4 - 2 x3 + x2 - 7x - 3
= 3x5 + 6x4 - x3 + x2 - x -1 + x4 - x3 - 6x - 2
= 3x5 +(6x4 + x4) +(-x3 - x3) + x2 +(-x - 6x) +(-1- 2)
Cách 2
P(x) = 3x5 + 6x4 - x3 + x2 - x - 1
Q(x) = - x4 + x3 + 6x + 2
P(x) + Q(x) =
+ 7x4
+ x2
- 7x
- 3
-
- 2x3
để cộng (hoặc trừ) hai đa thức một biến, ta có thể th?c hi?n theo nhưng cách nào ?
để cộng (hoặc trừ) hai đa thức một biến, ta có thể làm theo một trong hai cách sau:
Cách 2: Sắp xếp các hạng tử của hai đa thức cùng theo luỹ thừa giảm (hoặc tang) của biến,
rồi đặt phép tính theo cột dọc tuong t? nhu c?ng, tr? cac s? (chu ý đặt các đơn thức đồng dạng ở cùng một cột).
Cách 1: Thực hiện theo cách cộng, trừ đa thức đã học ở Đ6
* Chú ý:
(sgk)
3x5
Bài 1: Cho hai đa thức M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
Tính M(x) + N(x) và M(x) - N(x)
Luyện tập
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
+
-
M(x) + N(x) =
M(x) - N(x) =
4x4
+ 5x3
- 6x2
- 3
- 2x4
+ 5x3
+ 4x2
+ 2
+ 2x
Nghĩa là khi thực hiện phép tính M(x) - N(x) ta có thể đổi dấu các hạng tử của đa thức N(x) rồi thực hiện phép cộng hai đa thức M(x) + [- N(x)]
M(x) - N(x) = M(x) + [ - N(x) ]
M(x) = x4 + 5x3 - x2 + x - 0,5
- N(x) = - 3x4 + 5x2 + x + 2,5
M(x) - N(x) =
- 2x4
+ 5x3
+ 4x2
+ 2
+ 2x
+
Cho đa thức P(x) = - x3 - 3x2 + x
Tim đa thức Q(x) sao cho P(x) + Q(x) = 2x4 - 3x2 + 1
Luyện tập
Giải
P(x) + Q(x) = 2x4 - x2 + 1
=>
(2x4 - 3x2 + 1) - P(x)
= (2x4 - 3x2 + 1) - (- x3 - 3x2 + x)
= 2x4 - 3x2 + 1 + x3 + 3x2 - x
= 2x4 + x3 - x + 1
Q(x) =
Bài 2:
+ Học kĩ cách cộng (trừ ) hai đa thức một biến
+ Bài tập về nhà: Bài 44; 46; 47; 48; 50; 52 (SGK/45; 46)
Hướng dẫn về nhà
Hướng dẫn bài tập
Bài 46/sgk:
P(x) = 2x4 - x -2x3 + 1
Q(x) = 5x2 - x3 + 4x
H(x) = - 2x4 + x2 + 5
P(x) = 2x4 - 2x3 - x + 1
Q(x) = - x3 + 5x2 + 4x
H(x) = - 2x4 + x2 + 5
+
P(x)+Q(x)+H(x) =
P(x) = 2x4 - 2x3 - x + 1
- Q(x) = + x3 - 5x2 - 4x
- H(x) = 2x4 - x2 - 5
P(x)- Q(x)- H(x) =
+
Tính P(x) + Q(x) + H(x) và P(x) - Q(x) - H(x)
Tính P(x) + Q(x) + H(x) =
Tính P(x) - Q(x) - H(x) =
Tiết học đến đây kết thúc
468x90
 
Gửi ý kiến