Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương I. §7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: LÊ THIỆN ĐỨC (trang riêng)
Ngày gửi: 16h:57' 30-05-2015
Dung lượng: 180.0 KB
Số lượt tải: 605
Số lượt thích: 0 người
Chào thầy cô về dự giờ cùng với lớp chúng em
Kiểm tra bài cũ
Câu hỏi: Hoàn thành vế phải hằng đẳng thức sau:
1. A2 + 2AB + B2 =
2. A2 – 2AB + B2 =
3. A3 + 3A2B + 3AB2 + B3 =
4. A3 – 3A2B + 3AB2 – B3 =
5. A2 – B2 =
6. A3 + B3 =
7. A3 – B3 =
(A + B)2
(A – B)2
(A + B)3
(A – B)3
(A – B)(A + B)
(A + B)(A2 – AB + B2)
(A – B)(A2 + AB + B2)
Tiết 10 PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
BẰNG PHƯƠNG PHÁP DÙNG HẰNG ĐẲNG THỨC
2. Ví dụ
Phân tích các đa thức sau thành nhân tử :
a) x2 – 6x + 9 b) x2 – 3 c) 8x3 – 27y3
Giải
a) x2 – 6x + 9. Đa thức có dạng hằng đẳng thức: A2 – 2.A.B + B2
x2 – 6x + 9 = x2 – 2.x.3 + 32 = (x – 3)2
b) x2 – 3. Đa thức có dạng hằng đẳng thức: A2 – B2 = (A – B)(A + B)
A2 = x2 => A = x
; B2 = 9 Hay B2 = 32 => B = 3 ;
2.A.B = 6x = 2.x.3
A2 = x2 => A = x ;
c) 8x3 – 27y3.
Đa thức có dạng hằng đẳng thức A3 – B3 = (A – B)(A2 + AB + B2)
8x3 – 27y3 = (2x)3 – (3y)3 = (2x – 3y)[(2x)2 + 2x.3y + (3y)2]
= (2x – 3y)(4x2 + 6xy + 9y2)
A3 = (2x)3 ;
B3 = (3y)3 ;
(A – B)(A2 + AB + B2) = (2x – 3y)[(2x)2 + 2x.3y + (3y)2]
HỌC SINH LÀM VIỆC TẠI LỚP
?1 Phân tích các đa thức sau thành nhân tử
x3 + 3x2 + 3x + 1. đa thức có dạng hằng đẳng thức:
A3 + 3A2B + 3AB2 + B3 = (A + B)3. Trong đó A = x ; B = 1
x3 + 3x2 + 3x + 1 = x3 + 3.x2.1 + 3.x.12 + 13 = (x + 1)3
b) (x + y)2 – 9x2. Đa thức có dạng hằng đẳng thức
A2 – B2 = (A – B)(A + B). Trong đó A = x + y ; B = 3x
Do đó (x + y)2 – 9x2 = (x + y)2 – (3x)2 = (x + y – 3x)(x + y + 3x)
= (y – 2x)(y + 4x)
?2 Tính nhanh : 1052 – 25
1052 – 25 = 1052 – 52 = (105 – 5)(105 + 5)
= 100 . 110 = 11.000
3. Áp dụng
Ví dụ : Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp (2k – 1)2 – (2k + 1)2 chia hết cho 8 với mọi số nguyên k.
Giải:
Ta có (2k – 1)2 – (2k + 1)2 = [(2k – 1) – (2k + 1)][(2k – 1) + (2k + 1)]
= (2k – 1 – 2k – 1)(2k – 1 + 2k + 1)
= (– 2).4k = – 8k
Nên (2k – 1)2 – (2k + 1)2 chia hết cho 8 với mọi cố nguyên k
HỌC SINH LÀM VIỆC THEO NHÓM
Giải Câu a : x2 + 6x + 9 = x2 + 2.x.3 + 32
= (x + 3)2
43 – 20 Phân tích các đa thức sau thành nhân tử
Câu a : x2 + 6x + 9 ; (Tổ 1 và Tổ 2)
Câu b : 10x – 25 – x2 ; (Tổ 3 và Tổ 4)
Câu b : 10x – 25 – x2 = – (x2 + 10x + 25)
= – (x2 + 2.x.5 + 52)
= – (x + 5)2
Chú ý : Đôi khi đổi dấu và đổi vị trí các hạng tử mới xuất hiện hằng đẳng thức
-Tiếp tục học thuộc bảy hằng đẳng thức đáng nhớ
-Làm bài tập 44; 45; 46 trang 20 ; 21
-Xem trước bài Phân tích đa thức thành nhân tử bằng p2 nhóm hạng tử
Good bye
see your again
468x90
No_avatar

hay wa akCười nhăn răngCười nhăn răng

 
Gửi ý kiến