Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương III. §3. Đường thẳng vuông góc với mặt phẳng

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Hồ Thị Bình
Ngày gửi: 23h:08' 25-02-2021
Dung lượng: 878.5 KB
Số lượt tải: 598
Số lượt thích: 0 người
SỞ GIÁO DỤC ĐÀO TẠO THANH HÓA
TRƯỜNG THPT HÀM RỒNG
Chào mừng các thầy, cô giáo đến dự giờ lớp 11B3!
Năm học 2017 - 2018
Giáo viên: Hồ Thị Bình
Tiết 31: ĐƯỜNG THẲNG VUÔNG GÓC
VỚI MẶT PHẲNG (Tiếp theo)
-Góc giữa đường thẳng và mặt phẳng.
-Định nghĩa và các tính chất của phép chiếu vuông góc.
-Định lí ba đường vuông góc.
Nội dung bài học
Muốn chứng minh đường thẳng d vuông góc với một mặt phẳng () ta phải làm thế nào?
Kiểm tra bài cũ
Xét phép chiếu song song lên mặt phẳng (α) theo phương  vuông góc với mặt phẳng (α)
V. Phép chiếu vuông góc và định lý ba đường vuông góc
Nhắc lại phép chiếu song song ?
-(α) là mp chiếu
-  là phương chiếu
-M’ là hình chiếu song
song của M qua phép
chiếu song song trên.
1. Phép chiếu vuông góc
Phép chiếu song song lên mặt phẳng () theo phương  vuông góc với mặt phẳng () gọi là phép chiếu vuông góc lên mặt phẳng ().
Chú ý :
● Khi M  (P) thì M  M’
● Phép chiếu vuông góc có mọi tính chất của phép chiếu song song.
● Phép chiếu vuông góc lên (P) còn gọi là phép chiếu lên (P).
V. Phép chiếu vuông góc và định lý ba đường vuông góc
2. Định lí ba đường vuông góc

-Cho đường thẳng a không nằm trong
mp (P). Hãy xác định hình chiếu a’ của
đường thẳng a trên (P).






Hoạt động 1:
A
B
B’
A’
a’
-Là đường thẳng a’
Trả lời:
V. Phép chiếu vuông góc và định lý ba đường vuông góc
Hoạt động 2:
Với đường thẳng b nằm trong (P).
CM nếu b vuông góc với a. Suy ra b vuông góc với a’ và ngược lại.
Trả lời:
b  a và b  AA’ thì b  (a,a’) do đó b  a’.
b  a’ và b  AA’ thì b  (a.a’) do đó b  a.

● Nếu a nằm trong (P) thì điều trên còn đúng không?
● Nếu a  (P) thì hình chiếu của a là a nên kết quả trên là đúng
Chú ý :
a’ là h/c của a trên (P).
V. Phép chiếu vuông góc và định lý ba đường vuông góc
2. Định lý ba đường vuông góc
Cho đt a không vuông góc với (P), đt b nằm trong (P).
Điều kiện cần và đủ để b vuông góc với a là b vuông góc với hình chiếu a’ của a trên (P).
CM: ( Về nhà hoàn thiện)
Ví dụ:
Cho hình chóp S.ABCD có đáy là hình vuông.
SA  (ABCD). CM: BD  SC.
Cm:
Ta có:
BD  AC (do ABCD là hv).
BD  SA (do SA  (ABCD)).
BD  SC. (đpcm)
V. Phép chiếu vuông góc và định lý ba đường vuông góc
Định nghĩa :
- Nếu đường thẳng a vuông góc với mặt phẳng (P) thì ta nói rằng: Góc giữa đt a và mp (P) bằng 90 .
- Nếu đt a không vuông góc với mp (P) thì góc giữa a và hình chiếu a’ của nó trên (P) gọi là góc giữa đt a và mp (P).
3. Góc giữa đường thẳng và mặt phẳng
0
P
a
A
A’
I
a’
Lưu ý:
Góc giữa đường thẳng và mp
không vượt quá 90
0
a  ()
a  ()
a // ()
00
900
00  (a , ())  900
GÓC GIỮA ĐƯỜNG THẲNG a VÀ ()
a // b  (a , ()) = (b , ())
Nhận xét:
a
P
 XĐ giao điểm M của a với (P)
 Chọn A  a khác M,
sao cho dễ XĐ chân vuông góc H của A tới (P).

 XĐ hình chiếu H của A – Tìm được a’.
Góc giữa a, a’ cần tìm.
 PP CHUNG XĐ GÓC GIỮA ĐƯỜNG VÀ MẶT ?
Câu 1.
Góc giữa đường thẳng SD và mp(ABCD) là:
Góc ASD
Góc SDA
Góc SDB
Góc SDC
Ví dụ: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA vuông góc với mặt phẳng (ABCD)
và SA = a6 .
Câu 2. Góc giữa đường thẳng SC và mp(ABCD) là:
Góc ASC
Góc SCD
Góc SCB
Góc SCA
Câu 3. Tính góc giữa:
đt SC và mp (ABCD);
đt SC và mp (SAB);
đt SB và mp (SAC);
Ví dụ: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA vuông góc với mặt phẳng (ABCD)
và SA = a6 .
O
Nếu một đường thẳng vuông góc với hai cạnh của một tứ giác lồi thì nó vuông góc với hai cạnh còn lại của tứ giác đó.
B
Nếu một đường thẳng vuông góc với hai cạnh của một tam giác thì nó vuông góc với cạnh còn lại của tam giác đó.
1
A
Nếu một đường thẳng vuông góc với hai cạnh liên tiếp của một ngũ giác thì nó vuông góc với ba cạnh còn lại của ngũ giác đó.
Trong các mệnh đề sau, mệnh đề nào sai?
Nếu một đường thẳng vuông góc với hai đường chéo của một tứ giác lồi thì nó vuông góc với tất cả các cạnh của tứ giác đó.
C
D
ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG
2
2
Tập hợp tất cả các điểm M trong không gian cách đều hai điểm A và B là tập hợp nào sau đây?
Đường thẳng trung trực của đoạn AB.
Mặt phẳng trung trực của đoạn AB
Một mặt phẳng song song với AB.
Một đường thẳng song song với AB.
B
A
C
D
ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG
A. AD (SAB)
B. BC (SAD)
C. BD  SO
D. AH  SC
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O. SA vuông góc với đáy, H là hình chiếu vuông góc của A lên SD
Hãy chọn những đáp án đúng ?
3
Chỉ ra các đường thẳng vuông góc với đường thẳng EF trong hình sau?
Đáp án:
AB
BD
AD
4
B. CỦNG CỐ
- Định nghĩa đường thẳng vuông góc với mặt phẳng.
- Điều kiện để đường thẳng vuông góc với mặt phẳng.
- Định lý 3 đường vuông góc.
- Cách xác định góc giữa đường thẳng và mặt phẳng.
- Các tính chất liên hệ giữa quan hệ song song và vuông góc.
- Phương pháp chứng minh đường thẳng vuông góc với mặt phẳng.
- Phương pháp chứng minh đường thẳng vuông góc với đường thẳng.
C. HƯỚNG DẪN HỌC VỀ NHÀ
- Học kỹ các phần lý thuyết trên.
- Xem lại các bài tập đã chữa.
- Làm bài tập: 3; 4; 5; 8 (SGK – 104; 105).
- Cách xác định góc giữa đường thẳng và mặt phẳng.
Bài tập 4: Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc. Gọi H là
chân đường vuông góc hạ từ O xuống mặt phẳng (ABC)
Chứng minh rằng: a) H là trực tâm của ∆ABC.
b)
Bài tập 4: Cho tứ diện OABC có ba cạnh OA, OB, OC đôi một vuông góc. Gọi H là
chân đường vuông góc hạ từ O xuống mặt phẳng (ABC)
Chứng minh rằng: a) H là trực tâm của ∆ABC.
b)
Ta có
Ta lại có :
Từ (1) và (2) suy ra BC (OAH) BC AH
Chứng minh tương tự CA HB
Suy ra H là trực tâm của tam giác ABC
468x90
 
Gửi ý kiến