Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương IV. §8. Cộng, trừ đa thức một biến

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn Thị Thưởng
Ngày gửi: 06h:52' 26-10-2014
Dung lượng: 1.5 MB
Số lượt tải: 285
Số lượt thích: 0 người
NHIỆT LIỆT CHÀO MỪNG QUÝ THẦY, CÔ VỀ DỰ GIỜ, THĂM LỚP
Giáo viên: Hồ Quốc Vương
PHÒNG GIÁO DỤC& ĐÀO TẠO HUYỆN VẠN NINH
TRƯỜNG THCS TRẦN PHÚ
KIỂM TRA BÀI CŨ
Bài tập: Cho hai đa thức
P(x) = 2x5+ 5x4 - x3 + x2 - x -1; Q(x) = -x4 + x3 + 5x + 2
Hãy tính: a) P(x) + Q(x) b) P(x) - Q(x)
ĐÁP ÁN:
= 2x5 + 4x4 + x2 + 4x + 1
= 2x5 + (5x4 - x4) + (- x3 + x3) + x2 + (- x + 5x) + ( -1 + 2)
a) P(x) + Q(x) = (2x5 + 5x4 - x3 + x2 - x - 1) + ( -x4 + x3 + 5x + 2 )
= 2x5 + 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2
= 2x5 + (5x4 + x4) + (- x3 - x3) + x2 + (- x - 5x) + (- 1 - 2)
= 2x5 + 6x4 - 2x3 + x2 - 6x - 3
b) P(x)-Q(x) = (2x5 + 5x4 - x3 + x2 - x - 1) - (- x4 + x3 + 5x + 2 )
= 2x5 + 5x4 - x3 + x2 - x - 1 + -x4 + x3 + 5x + 2
Cách 2: (Cộng theo cột dọc )
P(x) = 2x5  5x4  x3 + x2 – x - 1
Q(x) = - x4 + x3 + 5x + 2
+
P(x) + Q(x) =
1. Cộng hai đa thức một biến:
Ví dụ: Cho hai đa thức
P(x) = 2x5 + 5x4 – x3 + x2 – x -1
Q(x) = -x4 + x3 +5x + 2
Hãy tính tổng P(x) + Q(x)
Giải:
Tiết 61: cộng, trừ đa thức một biến
2x5 + 4x4 + x2 + 4x + 1
= 2x5 + 4x4 + x2 + 4x + 1
= 2x5 + (5x4 - x4) + (- x3 + x3) + x2 + (- x + 5x)+ ( -1 + 2)
Cách 1: P(x) + Q(x)
= 2x5 + 5x4 - x3 + x2 - x - 1 + (-x4) + x3 + 5x + 2
= (2x5 + 5x4 - x3 + x2 - x - 1) + ( -x4 + x3 + 5x + 2 )
2. Trừ hai đa thức một biến
Ví dụ: Tính P(x) - Q(x)
= 2x5 + 5x4 - x3 + x2 - x -1 + x4 - x3 - 5x - 2
= 2x5 + (5x4 + x4) + (- x3 - x3) + x2 + (- x - 5x) + (- 1 - 2)
= 2x5 + 6x4 - 2x3 + x2 - 6x - 3
Cách 1: P(x)-Q(x)
= (2x5 + 5x4 - x3 + x2 - x - 1) - (- x4 + x3 + 5x + 2 )
Cách 2: (trừ theo cột dọc )
P(x) = 2x5  5x4  x3 + x2 – x - 1
Q(x) = - x4 + x3 + 5x + 2
-
P(x) + Q(x) =
2x5 + 6x4 -2x3 +x2 - 6x - 3
Chú ý: sgk trang 45
-Xác định đa thức - Q(x) ?
-Q(x) = - (-x4 + x3 + 5x +2)
Với Q(x) = (-x4 + x3 + 5x +2)
= x4 - x3 -5x - 2
P(x) = 2x5 + 5x4 - x3 + x2 - x -1
P(x)+[- Q(x)]
-Q(x) = x4 - x3 -5x -2
= 2x5 + 6x4 -2x3 + x2 - 6x -3
Vì P(x) - Q(x) = P(x) + [- Q(x)]
+
* Lưu ý:
Ta có thể trừ đa thức như sau:
-Thực hiện phép cộng
1. Cộng hai đa thức một biến:
Tiết 61: cộng, trừ đa thức một biến
2. Trừ hai đa thức một biến
3. Củng cố:
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
M(x)+N(x) = 4x4 +5x3 - 6x2 - 3
+
Bài tập ?1: Cho hai đa thức :
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
Hãy tính: a) M(x) + N(x) b) M(x) - N(x)
M(x) = x4 + 5x3 - x2 + x - 0,5
N(x) = 3x4 - 5x2 - x - 2,5
M(x)-N(x) = -2x4 + 5x3 + 4x2 +2x + 2
-
a)
b)
Giải:
3
Giải:
Q(x) = x4 - 2x3 + x2 - 5x -
P(x) = 8x4 - 5x3 + x2 -
+
P(x)+Q(x) = 9x4 - 7x3 + 2x2 - 5x - 1
HƯỚNG DẪN VỀ NHÀ
- Làm các bài tập: 44; 45; 46; 48 (SGK/ 45+46).
Hướng dẫn bài 45:
Tính Q(x): a) Vì P(x) + Q(x) = x5 – 2x2 + 1
=> Q(x) = (x5 – 2x2 + 1) – P(x)
Tính R(x): b) Vì P(x) – R(x) = x3
=> R(x) = P(x) – x3
Thay đa thức P(x) vào rồi thực hiện phép tính.
CẢM ƠN QUÝ THẦY CÔ GIÁO ĐÃ THAM DỰ TIẾT GIẢNG!
468x90
 
Gửi ý kiến