Violet
Baigiang

Tìm kiếm theo tiêu đề

Tin tức cộng đồng

5 điều đơn giản cha mẹ nên làm mỗi ngày để con hạnh phúc hơn

Tìm kiếm hạnh phúc là một nhu cầu lớn và xuất hiện xuyên suốt cuộc đời mỗi con người. Tác giả người Mỹ Stephanie Harrison đã dành ra hơn 10 năm để nghiên cứu về cảm nhận hạnh phúc, bà đã hệ thống các kiến thức ấy trong cuốn New Happy. Bà Harrison khẳng định có những thói quen đơn...
Xem tiếp

Tin tức thư viện

Chức năng Dừng xem quảng cáo trên violet.vn

12087057 Kính chào các thầy, cô! Hiện tại, kinh phí duy trì hệ thống dựa chủ yếu vào việc đặt quảng cáo trên hệ thống. Tuy nhiên, đôi khi có gây một số trở ngại đối với thầy, cô khi truy cập. Vì vậy, để thuận tiện trong việc sử dụng thư viện hệ thống đã cung cấp chức năng...
Xem tiếp

Hỗ trợ kĩ thuật

  • (024) 62 930 536
  • 0919 124 899
  • hotro@violet.vn

Liên hệ quảng cáo

  • (024) 66 745 632
  • 096 181 2005
  • contact@bachkim.vn

Tìm kiếm Bài giảng

Chương IV. §6. Hệ thức Vi-ét và ứng dụng

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Nguyễn phát đạt
Ngày gửi: 15h:55' 03-05-2020
Dung lượng: 1.1 MB
Số lượt tải: 316
Số lượt thích: 0 người
PHÒNG GD&ĐT QUẬN 6
TRƯỜNG THCS NGUYỄN ĐỨC CẢNH
TỔ TOÁN
MÔN: TOÁN
LỚP: 9/5
GV: Nguyễn Phát Đạt
CHÀO MỪNG
QUÝ THẦY CÔ VỀ DỰ GIỜ
Nhà toán học : Phrăng-xoa Vi-ét
( 1540 - 1603 )
LUYỆN TẬP
Tiết 58
I. Kiểm tra bài cũ.
II. Luyện tập.



Câu1: Phát biểu định lí Vi-ét .
Câu 2: Sửa bài tập 25 b,c (tr 52 sgk) :
Đối với mỗi phương trình sau,kí hiệu x1và x2 là hai nghiệm (nếu có).Không giải phương trình ,hãy điền vào những chỗ trống (..)
b) 5x2 - x - 35 = 0 ,
? =......,, , x1 + x2 =........, , x1x2 =...... ;

c) 8x2 - x + 1 = 0 ,
? =....., , x1 + x2 =.....,, , x1x2=.............;




Câu 1: Nêu các cách nhẩm nghiệm phương trình bậc hai ax2+ bx + c = 0 (a? 0 )

Câu 2: Hãy nhẩm nghiệm các phương trình sau:
1)Bài tập 26 b,c (tr 53 sgk) :
b) 7x2 + 500x - 507 = 0 ,
c) x2 - 49x - 50 = 0 ,
2)Bài tập 27a (tr 53 sgk) :
a) x2 - 7x + 12 = 0 ,


KIỂM TRA BÀI CŨ
Yêu cầu 1
Yêu cầu 2

Câu1: Phát biêủ định lí Vi-ét . (sgk)
Câu 2: Sửa bài tập 25 b, c tr 52 sgk:

b) 5x2 - x - 35 = 0 .
? =..........., , x1 + x2 =...... .; x1x2 =......;

c) 8x2 - x + 1 = 0 .
? =..........,



Phương trình không có nghiệm. Do đó không có tổng x1 + x2 và tích x1x2 .


Khi tính tổng và tích hai nghiệm phương trình bậc hai không chứa tham số ta thực hiện theo hai bước sau:
Bước 1: Kiểm tra phương trình có nghiệm hay không .
? Ta tính: ? (hoặc ?`)








ĐÁP ÁN
701
-7
Lưu ý
 Ñaëc bieät neáu a vaø c traùi daáu thì phöông trình luoân coù nghieäm.
Nếu phương trình không có nghiệm thì không có tổng x1+ x2 và tích x1x2 .

Trả lời yêu cầu 1
-31
2) Sửa bài tập 27 a (tr 53 sgk):
a) x2 - 7x + 12 = 0
Vì 3 + 4 = 7 và 3.4 = 12 nên phương trình có hai nghiệm là: x1= 3 ; x2 =4.
Trả lời yêu cầu 2
ĐÁP ÁN
Pt : ax2 + bx + c = 0 (a ? 0 )
Nếu a + c = - b thì ta có a + b + c = 0
Nếu a + c = b thì ta có a - b + c = 0
Chú ý

II. LUYỆN TẬP
1)Bài tập
1,5 x2 - 1,6x + 0,1 = 0

Nghiệm của Pt là :
x1 = ......; x2 = ......

d ) x2 - 7 x + 10 = 0

Nghieäm cuûa Pt laø :
x1 = ………………….. ; x2 = ………………….
b) mx2 + ( m -1 ) x - 1 = 0 (m ? 0)

Nghiệm của Pt là :
x1 = ........... ; x2 = ..............

c) ( 2 - ) x2 + 2 x – (2+ ) = 0

Nghieäm cuûa Pt laø :
x1 = …..….…. ; x2 = …………………….….


1
2
5
1
Vì a + b + c = 1,5 - 1,6 + 0,1 = 0 nên
Vì a - b + c = m - ( m - 1 ) - 1 = 0 nên
V ì 5 + 2 = 7 và 5. 2 = 10 nên
Nhẩm nghiệm các phương trình sau:
- 1
B) LUYỆN TẬP
2) Baøi taäp 30 a sgk:
Cho pt : x2 - 2x + m = 0
Tìm m để pt có nghiệm, rồi tính tổng và tích các nghiệm theo m.
Cách tìm m để phương trình bậc hai có nghiệm .
Tính: ? ( hoặc ?` )
Tính tổng và tích:
2. Lập luận:
Giải bất phương trình ? ? 0 ( hoặc ?` ? 0 ) tìm m.
3. Trả lời:
Phương trình có nghiệm khi và chỉ khi ? ? 0 ( hoặc ?` ? 0 )
B) LUYỆN TẬP
2) Baøi taäp 30 a sgk:
Cho pt : x2 - 2x + m = 0
Tìm m để pt có nghiệm, rồi tính tổng và tích các nghiệm theo m.
Bài Giải
Pt : x2 -2x + m = 0 (a = 1; b = -2; b/ = -1; c = m )
Tìm m để phương trình có nghiệm
?/ = b/2 - a.c = 1- m
Phương trình có nghiệm khi và chỉ khi ?/ ? 0 Hay 1-m ? 0
Do đó m ? 1
Vậy m ? 1 thì phương trình có nghiệm.
Tính tổng và tích:
B) LUYỆN TẬP
2) Baøi taäp 30 a sgk:
Cho pt : x2 - 2x + m = 0
Tìm m để pt có nghiệm, rồi tính tổng và tích các nghiệm theo m.
Chú ý
Khi tính tổng và tích hai nghiệm phương trình bậc hai có chứa tham số ta cần thực hiện :
Tìm điều kiện tham số để phương trình có nghiệm.
Tính tổng và tích hai nghiệm theo hệ thức Vi-ét .
Khai thác bài toán:
Không giải phương trình
Tính x12 + x22 theo m ?

B) LUYỆN TẬP
2) Baøi taäp 30 a sgk:
Cho pt : x2 - 2x + m = 0
Tìm m để pt có nghiệm, rồi tính tổng và tích các nghiệm theo m.
Khai thác bài toán:
Không giải phương trình
Tính x12 + x22 theo m ?
Pt : x2 - 2x + m = 0 có hai nghiệm là x1 và x2
Cách tính x12 + x22 :
Bước 1: Biến đổi x12+ x22 theo x1+ x2 và x1x2 .
x12 + x22 = ( x1+ x2)2 - 2 x1x2
Bước 2: Áp dụng hệ thức Vi-ét tính x1+ x2 và x1x2 .
Bước 3: Tính x12+ x22
x12+ x22= S2 - 2.P
Tính x13+ x23 theo m ?

B) LUYỆN TẬP
2) Baøi taäp 30 a sgk:
Cho pt : x2 - 2x + m = 0
Tìm m để pt có nghiệm, rồi tính tổng và tích các nghiệm theo m.
Khai thác bài toán:
Không giải phương trình
Tính x12 + x22 theo m ?
Tính x13+ x23 theo m ?

Pt : x2 -2x + m = 0 có hai nghiệm là x1 và x2
Cách tính x13 + x23 :
Bước 1: Biến đổi x13+ x23 theo x1+ x2 và x1x2 .
x13 + x23 = ( x1+ x2) (x12 + x22 - x1x2 )
Mà x12 + x22 = ( x1+ x2)2 - 2 x1x2
Nên x13 + x23 = ( x1+ x2) [ (x1 + x2)2 - 3x1x2 ]
Bước2: Áp dụng hệ thứcVi-ét tính x1+ x2 và x1x2 .
Bước 3: Tính x13+ x23
x13+ x23= S3 - 3PS
Do đó x13 + x23 = ( x1+ x2)3 - 3x1x2(x1 + x2)
Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm phương trình
x2 - Sx + P = 0
Tìm hai số u và v biết:
b) u + v = - 42
u.v = - 400
u, v là nghiệm của pt:
x2 + 42 x - 400 = 0
II. LUYỆN TẬP
3) Bài tập 32 sgk tr 54.
Giải phương trình ta được:
x1 = 8, x2= - 50
c) u - v = 5
u.v = 24
Vậy u = 8 , v = - 50
Hoặc u = - 50 , v = 8
Bài Giải
Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm phương trình
x2 - Sx + P = 0
Tìm hai số u và v biết:
a) u + v = - 42
u.v = - 400
B) LUYỆN TẬP
3) Bài tập 32 sgk tr 54.
b) u - v = 5
u.v = 24
Hướng Dẫn
Ta có : u - v = 5
? S = u + (-v) = 5
Và u .v = 24
? P = u.(-v) = - 24
Do đó u , (- v) là nghiệm của phương trình:
x2 - 5 x - 24 = 0
Vườn hoa trường có dạng hình chữ nhật.
Tìm a và b ?
Biết diện tích : 156 m2 ; chu vi : 50 m .
?
Có chiều dài a mét , chiều rộng b mét .
Chiều dài : a = 13 m .
Chiều rộng : b = 12 m .
Chứng tỏ rằng nếu phương trình ax2 + b x + c = 0 có nghiệm là x1, , x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
a x2 + bx + c = a ( x - x1) (x - x2 )

a x2 + b x + c = a ( x - x1 ) ( x - x2) .
= a [ x2 - ( x1 + x2 )x + x1.x2 ]
= a [ ( x2 - x1x2) - (x2 x - x1.x2) ]
= a ( x - x1) ( x - x2)
Hướng Dẫn
Áp dụng.
Phân tích các đa thức sau thành nhân tử.
a) 2x2 - 5 x + 3
T a có : a x2 + b x + c =
B) LUYỆN TẬP
4) Bài tập33 sgk tr 54.
Chứng minh :
a x2 + b x + c = a ( x - x1 ) ( x - x2) .
V ậy:

Chứng tỏ rằng nếu phương trình ax2 + b x + c = 0 có nghiệm là x1, , x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
a x2 + bx + c = a ( x - x1) (x - x2 )

Áp dụng.
Phân tích các đa thức sau thành nhân tử.
a) 2x2 - 5 x + 3
B) LUYỆN TẬP
4) Bài tập33 sgk tr 54.
Giải
T a có :
Pt : 2 x2 - 5 x + 3 = 0
HƯỚNG DẪN TỰ HỌC
3. Bài tập khuyến khích :
Ôn lại các bài tập đã giải ,hoàn thành các bài tập có hướng dẫn.
Bài tập về nhà : 29 , 30 (b ) , 31 (b) , 32 (b) , 33 (b) trang 54 sgk .
3) Bài tập khuyến khích
3. Bài tập khuyến khích :
Gọi x1 , x2 là hai nghiệm của phương trình : 2x2 + 5x - 3 = 0 , không giải phương trình.
a) Tính x1 - x 2 .
Tiết 59 : Kiểm tra 1 tiết .
Hướng Dẫn
Tính x1 - x2
(x1 - x2 )2 = ?
Suy ra x1 - x2 = ?
Pt cần tìm là : x2 - Sx + P = 0
468x90
 
Gửi ý kiến